An Open Notation for Memory Tests

Aad Offerman

Ad J. van de Goor

Section Computer Architecture & Digital Technique
Department of Electrical Engineering
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
E-mail: vdgoor@Qcardit.et.tudelft.nl

Abstract

Historically many ways of expressing memory tests
have been used, varying from the use of general pur-
pose programming languages to special notations. A
notation, originally introduced for march tests in 1990,
has been adopted and extended by many researchers.

This paper extends that notation, in a systematic
and open way, to a memory test language which al-
lows march tests, pseudo march tests, tests involving
topological neighborhoods (to cover pattern sensitive
faults), line mode tests, and pseudo random tests, to
be expressed in a unified manner. The syntax and se-
mantics facilitate the specification of memory tests in a
compact and readable way. Most important, the open
structure allows extensions to the notation when nec-
essary.

The notation presented in this paper is a sequel to
an earlier, much more confined notation proposed in
[van de Goor, 1996]. The complete OMTL language
specification can be found in [Offerman, 1997].

Keywords: memory tests, test languages, march
tests, neighborhoods, line mode tests, pseudo random
tests.

1 Introduction

Progress in science often has been made after an appro-
priate notation, which allows for an accurate, compact,
unambigious way of describing the domain-specific
problems and solutions, has been invented. Testing
semiconductor memories is an evolving area of research
where new contributions are being made; new fault
models are introduced and new, or improved, tests are
proposed to detect the faults of the fresh fault mod-
els. Historically, a variety of notations has been used

to represent memory tests; e.g., march tests, such as
the MATS+ test, were represented in a multi-line way
whereby the addressing was specified by the way the
operations of a given march element were positioned
in successive lines [Nair, 1979 and Abadir, 1983] (see
upper part of figure 1). A later notation [van de Goor,
1990] uses specific symbols to indicate the addressing
order such that a much more compact notation results
(figure 1, lower part).

WO ROW1 RIWO
WO ROW1 RIWO
WO ROW1 R1WO0
WO ROW1 R1WO

{8 (w0); 1 (r0, w1); 4 (r1,w0)}

Figure 1: notations for the MATS+ test.

For the representation of pseudo march tests, such as
GALPAT and Walking 1/0 [van de Goor, 1991], as well
as for tests for neighborhood pattern sensitive faults
(NPSFs) [van de Goor, 1991], a conventional program-
ming language, such as Pascal or C [Kernighan, 1978],
has traditionally been used. These languages do not
have constructs such that properties and characteris-
tics particular to memory tests are easy to grasp from
the test representation in program form.

The memory model, used implicitly in fault models
such as 2-coupling faults (CFs), is one-dimensional;
i.e., the memory cell array consists of a one-dimensional
vector of cells. Intuitively, this is not an accurate model
of the way the memory cell array is implemented.

The effectiveness of non march tests, such as
GALROW and GALCOL tests [van de Goor, 1991],
tests for imbalance faults [Mazumder, 1988], and tests

for sense amplifier saturation faults [van de Goor,
1991], as well as tests for NPSFs, have shown that
the one-dimensional memory model is not acceptable;
the addressing mechanism should be able to specify ad-
dressing orders in two dimensions as well as topological
neighborhoods.

Another implicit assumption was that only single-
port memories were used; hence, no mechanism to ex-
press multiple operations, parallel in time, was pro-
vided for. To a limited extend, tests for FIFO mem-
ories (which inherently are multi-port memories) have
been described [van de Goor, 1995 and Zorian, 1994]
by extending the notation introduced in [van de Goor,
1990].

Another simplification of the memory model was the
assumption that the memory has an external width
of a single bit. [Dekker, 1988] introduces the notion
of backgrounds to generalize march tests to cover B-
bit (B > 1) wide memories. [Treuer 1993 and 1993a]
extends the notation introduced in [van de Goor, 1990]
to include tests for B-bit memories.

The remainder of this paper is organized as follows.
Section 2 evaluates alternative notations for express-
ing memory tests; section 3 introduces the traditional
march tests; section 4 gives a detailed motivation and
description of the language; section 5 gives examples of
some well-known tests, while section 6 concludes this

paper.

2 Alternative notations

The new notation for memory tests has to provide a
unified framework for expressing march tests, pseudo
march tests (such as GALPAT and GALROW), tests
which involve topological neighborhoods (such as tests
for NPSFs and the Checkerboard test [van de Goor,
1991]), line mode tests, and pseudo random tests. The
notation (i.e. test language) should have natural sub-
sets to be used for the simple cases, while the syntax
and semantics of the language have to be such that:

tests can be expressed in an easy, natural way,
e tests can be expressed in a compact way,

e the language should have primitives for expressing
the essential parts of a test (i.e. the addressing
orders and the operations),

e the syntax should encourage the specification of
complete and correct tests,

e the language should be extendable easily and in a
natural way.

For the selection of an open memory test language
(OMTL) one could use an existing programming lan-
guage. The advantage is that the syntax and seman-
tics are well defined while, certainly in case of the C
programming language [Kernighan, 1978], almost any
operation can be expressed in an efficient way. How-
ever, most of the requirements, as stated above, are
not satisfied using such a language. The widespread
use of the notation introduced in [van de Goor, 1990]
indicates the need for an OMTL and the preference
of such an OMTL over a conventional programming
language. Many authors [Treuer, 1993, van de Goor,
1995, and Zorian, 1994] thereafter have extended that
language to allow for a unified representation of some
additional features required by their specific tests.

It is the intent of this paper to present a general
framework for an OMTL, based on [van de Goor, 1990],
such that existing march tests, pseudo march tests,
tests involving topological neighborhoods, line mode
tests, and pseudo random tests, can be expressed in
a uniform, natural way. Furthermore, this language
should allow others to define extensions for their own
specific purposes.

3 Traditional march tests

A ‘march test’” consists of a sequence of
‘march elements’. Each ‘march element’ consists
of a symbol denoting the ‘addressing order’ (‘{}’: up
addressing order, assuming an increasing address,
‘’: down addressing order, assuming a decreasing
address, ‘J’: one of the two previous addressing
orders), followed by a sequence of ‘operations’.

An ‘operation’ is an element of the following set: ‘r(’
(read operation with expected value 0), ‘r1’ (read oper-
ation with expected value 1), ‘w0’ (write 0 operation),
‘w1’ (write 1 operation). The operations in a march el-
ement will be applied consecutively to each cell before
continuing to the next cell.

An example of a commonly known march tests is:

o MATS+: {§ (w0);f (r0,wl); | (r1,w0)}

4 The Open Memory Test Lan-
guage

In this section the syntax of OMTL is explained. Sec-
tion 4.1 introduces addressing in a two-dimensional

memory model. The next two sections describe no-
tations for multi-port operations and operations on
multi-bit words. In section 4.4 three-dimensional mem-
ories and their addressing are given. Section 4.5 intro-
duces the concept of tiles, used for pattern sensitive
faults. In section 4.6 a notation for the specification of
line mode tests is introduced. The next section does
this for pseudo random tests. Section 4.8 gives the syn-
tax of global operations, which affect the whole mem-
ory cell array. In section 4.9 the sequential and parallel
operators, which allow test parts to be repeated or to
be executed in parallel, are presented.

4.1 Addressing in a two-dimensional
memory model

The memory cell array consists of rows and columns,
both having their specific properties and address de-
coders. Therefore, it is often not sufficient to use a one-
dimensional test. The addressing method presented
below is able to cope with a two-dimensional memory
model, with the one-dimensional memory model being
a natural subset. Furthermore, when necessary, the
memory dimensions can be extended with new ones,
as is done in section 4.4 for three-dimensional memory
models.

An ‘OMTL test’
‘march elements’.

consists of a sequence of
Various ‘march elements’
are defined: the ‘normal march elements’,
the ‘tile march elements’, which allow topo-
logical neighborhood patterns (tiles) to be
written to the memory cell array (see sec-
tion 4.5), the ‘line mode march elements’, to
specify line mode tests (see section 4.6), the
‘pseudo random march elements’, to specify
pseudo random tests (see section 4.7), and the
‘global march elements’, which specify operations
having effect on the total memory (see section 4.8).

4.1.1 ‘Normal march elements’
Each ‘normal march element’ consists of an
‘addressing’, specifying the order in which the

memory is addressed, followed by a sequence of
‘sub march elements’. These ‘sub march elements’
can be nested; in this way operations in a
‘normal march element’ are not limited to only
operate on the current word in the memory cell array,
as e.g. required for the read part of the Walking 1/0
and GALROW tests (see section 5).

For example, getting ahead of the rest of this story,
a test part that sets the memory cell array to all 0’s,

then sets a base cell to 1, and checks the column of
this base cell before continuing to the next base cell (a
GALCOL like test [Breuer, 1976]), would be specified
like this:

T (w0); $a (w1, §q (r0), wO)

In the nested addressing the addressing variable a is
used to exclude the current base cell from the column
being checked for 0’s. Addressing variables are intro-
duced in section 4.1.4. The ‘memory operations’ are
discussed in section 4.2.

An ‘addressing’ consists of a calligraphic

A, surrounded by an ‘addressing type’, an
‘addressing sequence’, and an ‘addressing range’.
(addressing) ::= (1)

i) . >A§addressing seque?ce)
(addressing type addressing range

The addressing type, sequence, and range specify the
exact way the memory cell array is addressed.

4.1.2 ‘“Addressing types’

The ‘addressing type’ is specified by a keyword, denot-
ing the type and the dimension of the addressing.

4.1.3 ‘Addressing sequences’
An ‘addressing sequence’ consists of more
‘addressing sequence specifiers’, providing more

information on the exact sequence in which the
memory is addressed.

Le. ‘linear’ results in a linear addressing sequence,
eg. ‘0,1,2,...%.
And the ‘pingpong’ sequence results in addresses as
depicted in figure 2.

N-4 N-3 N-2 N-1
...... e o o o

L]

Figure 2: pingpong addressing sequence.

To improve the readability of test specifications and
to meet the currently practiced notations, shortcuts
for addressing notations are defined. The tables 1, 2,
3, and 4 give an overview.

Some examples are given in table 5.

ﬁ mcaA:t
ﬂ mcaA+
’U’ mcaA_

Table 1: Shortcuts for ‘mca’ addressing types.

i 7“074}-/4i Ans columnA
T row-A+ — columru’4
~L row-Ai — column-Ai

Table 2: Shortcuts for ‘row’ and ‘column’ addressing
types.

4.1.4

An ‘addressing range’ consists of more
‘addressing range specifiers’, allowing parts of the
memory to be included or excluded from the ad-
dressing. To each addressing sequence an addressing
variable can be assigned for later use.

Below we give an example of a base cell exclusion
that is a variant of the one seen in section 4.1.1. First
the memory cell array is filled with 0’s. Then a base cell
with value 1 walks through the memory. To keep track
of its address, it is assigned to the addressing variable a.
For each base cell, all cells in its row are checked for 0,
except the base cell itself. After every check the base
cell is read. The read operation subscripted with the
addressing variable will be performed to the specified
address, in this case address a.

$ (w0); §o (w1, >4 (r0,741),w0)

‘Addressing ranges’

More on the syntax of memory operations and sub-
scripting these with operation addresses can be found
in section 4.2 and 4.3.

An example using a range inclusion; writing a 16 x 16
block of 1’s in a memory cell array of all 0’s, as depicted
in figure 3, is notated as:

T (w0); P32..47,16..31 (wl)

The pattern as in figure 3 can also be obtained by
first writing all 1’s to the memory cell array, and then
writing 0’s to it excluding the block:

T (w1); $-32..47,16..31 (w0)

N diago AT || | diagr AT
\l diag0 At \/ diagl At
,\ diagOAi /‘ d'iu,glA7

Table 3: Shortcuts for non-wrapped diagonal address-
ing types.

& diangA:t)Z/ diaglu)A:t
\1 diangA+ \/ d'iaglw-A+
n\ diangA_ /‘ diaglw-A_

Table 4: Shortcuts for wrapped diagonal addressing
types.

U?linear A—Zlinear
mca
T2p0w6r4 A+2p0'wer4
row
(_?gTay column-A'igray
y\pzngpong diagOA_pmgpong
/BIinear diangA+3lineaT

Table 5: Ezample shortcut notations.

4.2 Multi-port memory operations

To test multi-port memories, ‘memory operations’
can consist of several ‘port operations’, which will
be applied to the memory simultaniously through
the associated ports. If necessary, the ‘port’ of a
‘port operation’ can be specified explicitly by super-
scripting the ‘operation’.

For example, a march element that writes a 0 to
each memory cell, and at the same time checks through
port 1 if the previous cell indeed has become 0, would
be specified like this:

plinear (150 : r,_10)

4.3 Operations on multi-bit words

To allow for operations on multi-bit word memories, a
multi-bit word ‘operation’ is defined.

For example, a march element writing and checking
a Marching 1 pattern [Treuer, 1993 and 1993a] in a
4-bit word memory can be specified like this:

flinear (w0000, 7, w1000, r, w0100, r, w0010, r, w0001,
r, w0000)

-+ B

(3216) _ (32,31)

(47,16) (47,31

M []

Figure 3: a 16 x 16 block of 1’s in a memory cell array
of all 0’s.

The ‘operation address’ subscript can be used to op-
erate on other cells than the current one addressed, i.e.
to access neighborhoods of a base cell. The possibil-
ity to do this is required by tests like Butterfly (see
section 5).

4.4 Three-dimensional memories

Often the core of memories consists of more than
one memory cell array. The correct array is selected
by a third address decoder, the array decoder. Ad-
dressing the various arrays can be specified using an
‘array addressing’.

For example, a Zero-One or MSCAN test [Abadir,
1983] performed to all arrays sequentially is notated
as:

{array AT (0), § (r0), § (w1), T (1))}

4.5 Tiles

Tiles, used for patterns that cover more than just one
word, are required for tests for Neighborhood Pattern
Sensitive Faults (NPSF’s). The memory cell array is
assumed to be covered completely with tiles with a
rectangular shape.

For example, a traditional test that can only be spec-
ified using tiles is the Checkerboard test [van de Goor,
1991]. Tt divides the memory cell array into two groups
of cells as shown in figure 4. A 1 is written to all 1-

N RN R
RN RN
N RN P
RN RN

Figure 4: Checkerboard pattern.

cells and a 0 to all 2-cells. After completion all cells
are read. The whole process is then repeated with Os
in all 1-cells and 1s in all 2-cells. A tile with a height
of 2 words and a width of 2 words is the minimum size
required to contain the repetitive pattern needed for
the Checkerboard test. The complete specification of
the Checkerboard test is given in section 5.

For example, a tile march element writing 0’s to all
(0,1) locations of a 2 x 2 tile pattern, first addressing
the rows in positive direction and then addressing the
column in negative direction, would be written as:

T<_[2a2] (w[O,I] 0)

4.5.1 Special cases: type 1 and type 2 tiling
groups

For the often used type 1 (consisting of 4 adjacent
cells) and type 2 neighborhoods (consisting of 8 adja-
cent cells) two keywords ‘typel’ and ‘type2’ are defined
that can be specified as the ‘tiling groups type’ instead
of the normal ‘tile size’. Now the ‘location’ of a local
operation consists of only one ‘indez’, specifying the
cell number within the tiling group.

For example, a tile march element writing a 0 to all
4 and 5 locations in a type 2 tiling group pattern, first
addressing all columns and then the row in positive
direction, would be specified like this:

(—)T[typezl (w[4]0, w[5]0)

4.5.2 Defining new tiling groups

When necessary, new tiling groups with their own
‘tiling group type’ keyword can be defined by specify-
ing a ‘tile size’ and a ‘location numbering’.

For example, to define the type 1 tiling groups, a
5 x 5 tile is required, resulting in a specification like
this:

typel = [575](0717273747 2737470717 4707172737
1,2,3,4,0, 3,4,0,1,2)

And the checkerboard pattern as depicted in figure 4
would be specified as:

checkerboard = [2,2](1,2, 2,1)

4.6 Line mode tests

Some memory chip designs already have built-in fa-
cilities for testing purposes. These can be ex-
ploited using ‘special operations’, or using “special”
‘march elements’, as is the case, for example, with the
‘pseudo random march elements’ (see section 4.7).

In this section ‘line operations’, acting on complete
rows in the memory cell array, are introduced [Inoue,
1987 and Matsuda, 1989].

A read ‘line operation’ (‘;iner’) reads all bits in the
current row, using an ‘interleaving’ and ‘offset’. If the
‘expected data’ is a 0, all the selected bits in the row
are ORed; if it is a 1, all bits and ANDed. A write
‘line operation’ (‘ijpew’) writes all bits in the current
rOw.

For example, the following march elements write and
read 0’s to and from the memory cell array, accessing
complete lines, and using an interleaving of 4 and an
offset of 2:

i (lineUJ]-)Qi (linew4720aline r4’207line w4’21)

4.7 Pseudo random tests

The ‘addressing sequence’ of a pseudo ran-
dom march element consists of two address-
ing sequence specifiers: the first specifying the
‘pseudo random addressing sequence’, and the
second specifying the ‘pseudo random generator’.
A ‘pseudo random addressing sequence’ can be an
ordinary ‘addressing sequence’, having the same
syntax and meaning as the tile addressing se-
quences defined in section 4.5. Or it can be a
‘pseudo random pseudo random addressing sequence’,
in which the addresses are determined by taking a
‘pseudo random pattern’ from the pseudo random
generator. A ‘pseudo random pattern’ is a string of
0’s and 1’s from which parts can be derived from
the pseudo random string generated by the pseudo
random generator.

For the next examples, suppose the pseudo random
string currently has the value 11001010. Then the
pseudo random pattern 77 selects bit number 7 (note
that the lesb has index 0), being a 1. 74 selects the
substring 0101.

An example combining with binary digits and
overlapping selections: the pseudo random pattern
11?400?6,4 results in 11000100.

The ‘pseudo random generator’ can be specified
by the ‘seed’, the ‘binary word’ that specifies
the pseudo random string to start with, and a
‘characteristic polynomial’.

For example, a 4 bit pseudo random generator could
look like this:

1000, z + 2°
Apart from a “’ (read) and ‘w’ (write),
a ‘pseudo random operation’ can be a

‘pseudo random operator’, in which case the operation
itself is pseudo random. The ‘pseudo random operator’
consists of a special symbol ‘-’ subscripted with the
‘“tndex’ of the digit from the pseudo random string
that will be driving the memory’s R/W control line.
For example, a complete pseudo random march ele-
ment with a pseudo random pseudo random addressing
sequence for a 2 bit memory could look like this:

?4,0?4,0 ;0111,LE+Z2 (

pseudo randomA 'U)?l,O;T)

Another example, using the pseudo random opera-
tor:

. 3 r
A+mca,1010,1+z (,wr?

pseudo random -2,1, — ?3,23 T‘)
w 2

A memory with CRC logic (Cyclic Redundancy
Check) and operating in compress mode works the

outputs of pseudo random tests into a response sig-
nature. After completion the resulting response sign-
ture is compared against the value known to be cor-
rect. A ‘pseudo random crc reset operation’, notated
as ‘crc R’, resets the pseudo random crc counter.
A ‘pseudo random crc check operation’ consists of the
keyword ‘cre’ followed by the ‘expected data’.

So, a typical CRC BIST (Build-In Self-Test) will
have the following pattern:

creR, ... cre

4.8 Global operations

A ‘global operation’ affect the entire memory.

A ‘reset operation’, specified by an ‘R’, resets the
memory: all parameters are set to their power-up
value.

Some faults in the memory may take time to de-
velop, e.g. data retention faults [Dekker, 1988]. A ‘d’
operation can be used to specify the elapse of one or
more time cycles. Using the ‘D’ operation, a certain
amount of time can be passed. A ‘D’ operation with-
out any time specification will cause enough time to
pass as needed for all effects to become extinct.

For example, a march element that waits three mem-
ory cycles before reading 11 from each word of a two-bit
word memory would be specified like this:

$ (3d,r11)

Setting the clock speed with which the memory is
operated can be done using the ‘clock operation’.

For example, a test writing 1’s to the memory array
at a speed of 1220MHz, and then reading at 100 MHz,
will be specified like this:

{C120MHz; { (wl); C100MHz;§ (r1)}

Sometimes in a test, V.. is lowered to accelerate the
appearing of certain faults. The ‘Vcc operation’ can
be used to specify V..

For example, writing a 1 to a cell, lower V.. to 1.8V
for 100ms, and then check if the cell still contains the
1, would be specified like this:

{ (w1, V1.8V, D100ms, Vee,r1)

Another method to stress a memory chip to issue
certain faults is to increase the operating temperature.
This can be specified using a ‘temperature operation’.

For example, a march element executed on a memory
at 140°C could look like this:

T140C; § (w1, 100r1)

4.9 The sequential and parallel opera-
tors

Often in memory tests, similar looking parts can be
recognized that only differ in addressing direction or
have inversed data. To facilitate for shorter notations
for these cases, a ‘sequential operator’ is available. In
its most general form, it consists of a calligraphic ‘S’
together with a running index and one or more expres-
sions using this index. The resulting value is assigned
to a ‘variable’; a member of the lowercase Greek letters,
and can be used in the test.

The sequential operator can also be used to define
addressing sequences. For example, the pingpong se-
quence can be defined as follows:

in_
pingpong = Sji\; 1oz,N —1-«

where N is the length of the addressing dimension,
resulting in the sequence SO,N—1,1, N—2,2, N-3,....

Nowadays most memories contain dedicated hard-
ware for testing purposes. Since the tests are often
parallelized, furthermore a parallel operator is defined.
It has the same syntax as the sequential operator, ex-
cept the calligraphic ‘P’ replacing the ‘S’. The in this
way specified test parts are executed in parallel.

For example, to run a test on all arrays of a three-
dimensional memory simultaniously, the parallel oper-
ator can be used.

Parray{---}

5 Examples

In this section we will provide a set of examples to
demonstrate the constructs and expressive power of
OMTL. Where available, well known memory tests
are used.

e Sliding Diagonal [van de Goor, 1991]:

{0 (w0);, 7 (% (w1), T (r), x (w0));
T (w1) 2 (N (w0), T (r), \ (wl))}

The memory cell array is filled with 0’s. Then a
diagonal is set to 1 and the complete memory cell
array is checked. This is applied for each diag-
onal in the memory cell array. After completion
the test is repeated with 0’s in the diagonal and a
background of all 1’s.

e Walking 1/0 [Breuer, 1976]:

{§ (w0); §q (wl, g (r0), 71, w0);
$ (w1); 80 (w0, §a (r1),70,wl)}

The memory is filled with 0’s. The base cell walks
through the memory cell array and is set to 1. For
every base cell set to 1, every other cell in the
memory cell array is read. Then the base cell is
read before continuing to the next base cell. Af-
ter addressing the complete memory cell array the
process is repeated with 1’s in the memory cell ar-
ray and a 0 in the base cell.

An alternative, shorter but probably less readable
notation, using the sequential operator:

So=0,1{{ (wa); o (W&, o (ra),ra, wa)}

o Butterfly [van de Goor, 1991]:

{3 (w0);
ﬁa (w1, Ta,a4+10,7a+1,00,7a,a-10,74-1,40, w0);
$ (wl);

ﬁa (’11]0, Ta,a+1 17 'ra+1,a17 Ta,a—1 1; Ta,fl,ala W1)}

All cells are set to 0. A base cell set to 1 walks
through the memory cell array. For each base cell
a type 1 neighborhood (consisting of four cells) is
read before continuing to the next base cell. Then
the complete process is repeated with the memory
cell array set to 0 and the base cell set to 1.

e The Checkerboard test [van de Goor, 1991] can be
specified using the checkerboard tile with height 2
and width 2. The algorithm looks like this:

{ﬁ[checkerboard] (w[O] 1, w[1]0)7

Il[ch,eckerboard] (,,.[0]]_7 7'[1]0);

ﬁ[checkerboard] (w[o](],w[l]l);
ﬁ[checkerboa'rd] (7’[0]0, an 1)}

6 Conclusions

The proposed OMTL is an extendable language and
has been defined using the well established syntax no-
tation BNF for programming languages. It allows for
the use of a uniform notation for all memory tests. The
language syntax is given in the BNF notation used
for the unambigious definition of computer program-
ming languages, and because of that lexical analysis
and parsing methods from this world can be applied to
memory tests.

Primitive operations have been introduced to allow
for a high level of abstraction and to reduce the seman-
tic gap between the semantic world of the memory test
designer and the capabilities of the OMTL language.

The OMTL constructs are based on the notation
used for march tests, which has already been adopted
(and extended) by many researchers. It allows for a
consistant, compact notation for march tests, pseudo
march tests, tests for neighborhood pattern sensitive
faults, line mode tests, and pseudo random tests. In
addition, the memory model is allowed to be two- and
three-dimensional, multi-port, and to contain B-bit
(B > 1) words.

OMTL is an open notation. Memory test design-
ers and researchers will be able to add extensions to
fit their needs. In this document enough material has
been provided to enable others to build on the notation
proposed here in a orthogonal and consequent way.

The expressive power of OMTL has been demon-
strated using many examples from a large variety of
different classes of memory tests. Using OMTL, the
communication between designers and implementors of
memory tests will be more efficient and less error prone.

References

[1] Abadir, M.S. and Reghbati, J.K. (1983). Func-
tional Testing of Semiconductor Random Ac-
cess Memories. ACM Computing Surveys, 15(3),
pp- 175-198.

[2] Breuer, M.A. and Friedman, A.D. (1976). Diagno-
sis and Reliable Design of Digital Systems. Com-
puter Science Press, Inc., Woodland Hills, CA,

USA.

Dekker, R. et al. (1988). Fault Modelling and Test
Algorithm Development for Static Random Access
Memories. In Proc. IEEE Int. Test Conference,
pp- 343-351.

[4] Goor, A.J. van de and Verruijt, C.A. (1990). An
Overview of Deterministic Functional RAM Chip
Testing. ACM Computing Surveys, 22(1), pp. 5-

33.

Goor, A.J. van de (1991). Testing Semiconductor
Memories, Theory and Practice (536 pages). John
Wiley & Sons, Chichester, UK.

Goor, A.J. van de (1993). Using March Tests to
Test SRAMs. In IEEE Design & Test of Comput-
ers, March 1993, pp. 8-14.

Goor, A.J. van de et al. (1995). Functional Test
for Shifting-type FIFOs. In Proc. IEEE European
Test Conference, Paris, March 6-9.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Goor, A.J. van de, Offerman, A., and
Schanstra, H.I. (1996). Towards a Uniform
Notation for Memory Tests. In Proc. European
Design & Test Conference, pp. 420-427.

Inoue, J. et al. (1987). Parallel Testing Technol-
ogy for VLSI Memories. In Proc. IEEE Int. Test
Conference, pp- 1066-1071.

Jonge, J.H. de and Smeulders, A.J. (1976). Mov-
ing Inversions Test Pattern is Thorough, Yet
Speedy. Computer Design, May 1976, pp. 169-173.

Kernighan, B.W. and Ritchie, D.M. (1978). The
C Programming Language. Prentice-Hall, Engle-
wood Cliffs, N.J.

Matsuda, Y. et al. (1989). A New Array Archi-
tecture for Parallel Testing in VLSI Memories. In
Proc. IEEE Int. Test Conference, pp. 322-326.

Mazumder, P. (1988). Parallel Testing of Para-
metric Faults in a Three-Dimensional Random-
Access Memory. In Proc. IEEE Int. Test Confer-
ence, pp- 933-941.

Nair, R. (1979). Comments on “An Optimal Al-
gorithm for Testing Stuck-at Faults in Random
Access Memories”. IEEE Trans. on Computers,
C-28(3), pp. 258-261.

Offerman, A. and van de Goor, Ad. J. (1997). An
Open Notation for Memory Tests. Technical Re-
port No.1-68340-44(1997)07, Delft University of
Technology.

Treuer, R.P. and Agarwal, V.K. (1993). Fault
Location Algorithms for Repairable Embedded
RAMs. In Proc. IEEE Int. Test Conference,
pp. 825-834.

Treuer, R.P. and Agarwal, V.K. (1993a). Built-In
Self-Diagnosis for Repairable Embedded RAMs.
IEEF Design € Test of Computers, 10(2), pp. 24-
33.

Zorian, Y. et al. (1994). An Effective BIST Scheme
for Ring-Address Type FIFOs. In Proc. IEEE Int.
Test Conference, pp. 378-387.

