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Progress in science often has been made after an appropriate notation, which allows for an accurate, compact,
unambigious way of describing the domain-specific problems and solutions, has been invented. Testing semicon-
ductor memories is an evolving area of research where new contributions are being made; new fault models are
introduced and new, or improved, tests are proposed to detect the faults of the fresh fault models. Historically,
a variety of notations has been used to represent memory tests; e.g., march tests, such as the MATS+ test,
were represented in a multi-line way whereby the addressing was specified by the way the operations of a given
march element were positioned in successive lines [Nair, 1979 and Abadir, 1983] (see left part of figure 1). A
later notation [van de Goor, 1990] uses specific symbols to indicate the addressing order such that a much more
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Introduction

compact notation results (figure 1, right part).

W0  ROWIL RIW0
W0  ROWI  RIWO
W0  ROWI RIWO
W0  ROWI RIWO {8 (w0); 1+ (r0, wl); § (r1,w0)}

Figure 1: notations for the MATS+ test.



For the representation of pseudo march tests, such as GALPAT and Walking 1/0 [van de Goor, 1991], as well
as for tests for neighborhood pattern sensitive faults (NPSFs) [van de Goor, 1991], a conventional programming
language, such as Pascal or C [Kernighan, 1978], has traditionally been used. These languages do not have
constructs such that properties and characteristics particular to memory tests are easy to grasp from the test
representation in program form.

The memory model, used implicitly in fault models such as 2-coupling faults (CFs), is one-dimensional; i.e., the
memory cell array consists of a one-dimensional vector of cells. This can be deduced from the fact that for CF's,
involving a coupling and a coupled cell, only two topological cases are considered: the coupling cell has a lower
or a higher address than the coupled cell. Intuitively, this is not an accurate model of the way the memory cell
array is implemented.

Non march tests, such as GALROW, GALCOL tests [van de Goor, 1991], tests for imbalance faults [Mazumder,
1988], and tests for sense amplifier saturation faults [van de Goor, 1991], etc., assume, in agreement with the
physical organization of the memory cell array, a two-dimensional memory model, distinguishing rows and
columns.

The effectiveness of the GALROW and GALCOL tests, the test for imbalance, and sense amplifier saturation
faults, as well as tests for NPSFs, have shown that the one-dimensional memory model is not acceptable; the
addressing mechanism should be able to specify addressing orders in two dimensions as well as topological
neighborhoods (for tests for NPSFs and for the Checkerboard test [van de Goor, 1991]).

Another implicit assumption was that only single-port memories were used; hence, no mechanism to express
multiple operations, parallel in time, was provided for. To a limited extend, tests for FIFO memories (which
inherently are multi-port memories) have been described [van de Goor, 1995 and Zorian, 1994] by extending
the notation introduced in [van de Goor, 1990].

Another simplification of the memory model was the assumption that the memory has an external width
of a single bit. [Dekker, 1988] introduces the notion of backgrounds to generalize march tests to cover B-bit
(B > 1) wide memories. [Treuer 1993 and 1993a] extends the notation introduced in [van de Goor, 1990] to
include tests for B-bit memories.

The remainder of this paper is organized as follows. Section 2 evaluates alternative notations for expressing
memory tests; section 3 introduces the BNF notation, used to specify the proposed language; section 4 gives a
detailed motivation and description of the language; section 5 gives examples of some well-known tests, while
section 6 concludes this paper.

2 Alternative notations

The new notation for memory tests has to provide a unified framework for expressing march tests, pseudo march
tests (such as GALPAT and GALROW), tests which involve topological neighborhoods (such as tests for NPSFs
and the Checkerboard test), line mode tests, and pseudo random tests. The notation (i.e. test language) should
have natural subsets to be used for the simple cases, while the syntax and semantics of the language have to be
such that:

e tests can be expressed in an easy, natural way,
e tests can be expressed in a compact way,

e the language should have primitives for expressing the essential parts of a test (i.e. the addressing orders
and the operations),

e the syntax should encourage the specification of complete and correct tests,
e the language should be extendable easily and in a natural way.

For the selection of an open memory test language (OMTL) one could use an existing programming language.
The advantage is that the syntax and semantics are well defined while, certainly in case of the C programming



language [Kernighan, 1978], almost any operation can be expressed in an efficient way. However, most of the
requirements, as stated above, are not satisfied using such a language. The widespread use of the notation
introduced in [van de Goor, 1990] indicates the need for an OMTL and the preference of such an OMTL over
a conventional programming language. Many authors [Treuer, 1993, van de Goor, 1995, and Zorian, 1994]
thereafter have extended that language to allow for a unified representation of some additional features required
by their specific tests.

It is the intent of this paper to present a general framework for an OMTL, based on [van de Goor, 1990],
such that existing march tests, pseudo march tests, tests involving topological neighborhoods, line mode tests,
and pseudo random tests, can be expressed in a uniform, natural way. Furthermore, this language should allow
others to define extensions for their own specific purposes.

3 The BNF notation

The syntax of OMTL is explained using a variant of the BNF notation (Backus-Naur Form). Each syntactical
category is denoted by its ‘name’ enclosed in brackets (...)" and defined as follows:

(name) ::= (expressionl) | (expression2) | ...

The ‘::=’ symbol, which means: ‘is defined as’, is followed by an expression of the categories from which
the syntactical category is composed. A ‘|’ symbol denotes a choice: one of the elements has to be selected.
Categories between curly braces ‘{...}’ can be repeated zero or more times. In cases where there could be
confusion between symbols used in the BNF notation, called the meta language, and the test language OMTL,
the test language symbols are underlined. The category ‘{empty)’ is special: it is empty. It can be used in a
syntactical category that, or from which parts, can be omitted.

3.1 BNF for traditional march tests

A ‘march test’ is delimited by curly braces ‘{...}’, and consists of a sequence of ‘march elements’, separated by
semicolons *;’.

(march test) == {(march element){;(march element)}} (1)

Each ‘march element’ consists of a symbol denoting the ‘addressing order’ (‘)}: up addressing order, as-
suming an increasing address, ‘|’: down addressing order, assuming a decreasing address, ‘§’: one of the two
previous addressing orders), followed by, delimited by parentheses ‘(...)’, a sequence of ‘operations’, separated
by comma’s ¢,’.

(march element) = (addressing order)({operation){,{operation)}) (2)

(addressing order) == |[f|$ (3)

Note that the addressing orders are not necessarily linear, as long as the up addressing order 4}’ and the down
addressing order ‘|}’ are each other’s opposite.

An ‘operation’ is an element of the following set: ‘rQ’ (read operation with expected value 0), ‘rl’ (read
operation with expected value 1), ‘w0’ (write 0 operation), ‘wl’ (write 1 operation).

(operation) == r0|rl|w0|wl (4)

The operations in a march element will be applied consecutively to each cell before continuing to the next cell.
Two examples of commonly known march tests are:

o MATS+: {§ (w0); 1 (r0,wl); Y (rl,w0)}
e March B: {{ (w0); 1 (r0,wl,rl,w0,r0,wl);f (r1,w0,wl); (rl, w0, wl, w0);{ (r0,wl, w0)}



4 The Open Memory Test Language

In this section the syntax of OMTL is explained. Section 4.1 introduces addressing in a two-dimensional
memory model. The next two sections describe notations for multi-port operations and operations on multi-bit
words. In section 4.4 three-dimensional memories and their addressing are given. Section 4.5 introduces the
concept of tiles, used for pattern sensitive faults. In section 4.6 a notation for the specification of line mode
tests is introduced. The next section does this for pseudo random tests. Section 4.8 gives the syntax of global
operations, which affect the whole memory cell array. In section 4.9 the sequential and parallel operators, which
allow test parts to be repeated or to be executed in parallel, are presented.

Note that the BNF specification of OMTL is only an expedient used to specify the syntax of a memory test;
tests complying with this specification are not necessarily semantically correct.

4.1 Addressing in a two-dimensional memory model

The memory cell array consists of rows and columns, both having their specific properties and address decoders.
Therefore, it is often not sufficient to use a one-dimensional test (e.g. a conventional march test). The addressing
method presented below is able to cope with a two-dimensional memory model, with the one-dimensional
memory model being a natural subset. Furthermore, when necessary, the memory dimensions can be extended
with new ones, as is done in section 4.4 for three-dimensional memory models.

An ‘OMTL test’ is delimited by curly braces ‘{...}’, and consists of a sequence of ‘march elements’, separated
by semicolons ‘;’.

(OMTL test) == {(march element){;(march element)}} (5)

Various ‘march elements’ are defined: the ‘normal march elements’, the ‘tile march elements’, which al-
low topological neighborhood patterns (tiles) to be written to the memory cell array (see section 4.5), the
‘line mode march elements’, to specify line and block mode tests (see section 4.6), the ‘pseudo random march elements’,
to specify pseudo random tests (see section 4.7), and the ‘global march elements’, which specify operations hav-
ing effect on the total memory (see section 4.8).
(march element) ::= (normal march element) | (6)
tile march element) |
line mode march element) |

(
(
(pseudo random march element) |
(global march element) |

When necessary, new ‘march elements’ can be defined, or the existing notations can be extended.

4.1.1 ‘Normal march elements’

Each ‘normal march element’ consists of an ‘addressing’, specifying the order in which the memory is addressed,
followed by, delimited by parentheses ‘(...)’, a sequence of ‘sub march elements’, separated by comma’s .

(normal march element) ::= (addressing)((sub march element){,(sub march element)}) (7

‘Sub march elements’ can be nested; in this way operations in a ‘normal march element’ are not limited to
only operate on the current word in the memory cell array. They may have their own ‘addressings’, in order to
allow for nested addressing sweeps of the complete memory or parts of it, as e.g. required for the read part of
the Walking 1/0 and GALROW tests (see section 5).

(sub march element) = (addressing)((sub march element){,(sub march element)}) | €)
(memory operation) |

{global operation)



For example, getting ahead of the rest of this story, a test part that sets the memory cell array to all 0’s,
then sets a base cell to 1, and checks the column of this base cell before continuing to the next base cell (a
GALCOL like test [Breuer, 1976]), would be specified like this:

ﬁ (w0); ﬁa (wl,ﬁ_,a (r0), w0)

In the nested addressing the addressing variable a is used to exclude the current base cell from the column being
checked for 0’s. Addressing variables are introduced in section 4.1.4.

Of course it is possible to specify more addressing sweeps of the memory in the second dimension. For
example, the following march element addresses, in positive direction, all columns. Every column is addressed
three times: twice in negative direction, and then once in positive direction.

= () ()

The ‘memory operations’ are discussed in section 4.2. Section 4.8 enlightens ‘global operations’, which are
part of the ‘global march elements’ also. The rest of this section is devoted to the ‘addressings’ of normal march
elements.

An ‘addressing’ consists of a calligraphic A, surrounded by an ‘addressing type’, an ‘addressing sequence’,
and an ‘addressing range’.

; — (addressing sequence)
(addressmg) = (addressing type)'A(addressing range) (9)

The addressing type, sequence, and range specify the exact way the memory cell array is addressed.

4.1.2 ‘Addressing types’
The ‘addressing type’ is specified by a keyword, placed at the lower left of the addressing symbol ‘A’.

(addressing type) == meca | (10)

row |

column |

diag0 |

diag1 |

diagOw |

diaglw

The keyword denotes the type and the dimension of the addressing.

An ‘mea’ addressing (memory cell array) is used with a one-dimensional memory model (see figure 2)
and addresses the complete memory cell array. The rest of the addressing types assumes a two-dimensional

memory cell array

Figure 2: 1-dimensional memory model.

memory model, as depicted in figure 3. The ‘row’ and ‘column’ addressing types address all rows and columns
respectively. Addressing of the two diagonals can be specified using the ‘diag0’ and ‘diag!’ addressing types.
‘diag0w’ and ‘dieglw’ address the diagonals too, including the wrap-around part, as depicted in figure 4.

Unless explicitly specifying only a part of a memory test, the nesting of addressings in a two-dimensional
test should result in a complete test, meaning that row as well as column addresses should be generated for
each operation that needs these addresses.



memory cell array

Figure 3: 2-dimensional memory model.

v

diaglw

diagow

diaglw diagOw

memory cell array

Figure 4: Wrapped-around diagonals.

4.1.3 ‘Addressing sequences’

In general, an ‘addressing sequence’, placed at the upper right of the addressing symbol ‘A’, consists of more
‘addressing sequence specifiers’, separated by semicolons ;.

(addressing sequence) ::= (addressing sequence specifier){;(addressing sequence specifier)} (11)

The addressing sequence specifiers provide more information on the exact sequence in which the memory is
addressed.

For normal march elements the ‘addressing sequence specifier’ specifies the ‘sequence’, the ‘step’, and the
‘direction’ of the generated addresses.

(addressing sequence Specifier)normal march element = {direction){step){sequence) (12)
The ‘sequence’ is denoted by a keyword.
(sequence) == linear | (13)
2power(factor) |

gray |
pingpong |

‘linear’ results in a linear addressing sequence, e.g. ‘0,1,2,...".
The keyword ‘2power’, possibly followed by a ‘factor’, specifies addresses being a two power 2{/actor)e

(factor) == (integer) | (14)
(empty)



(integer) == (digit){(digit)} (15)

(digit) == 0|1]...9 (16)

The factor defaults to 1, i.e. ‘1,2,4,8,...". For example, ‘2power?2’ results in the addressing sequence ‘1,4, 16, ...".
The ‘gray’ keyword specifies a Gray code addressing sequence, in which each generated address differs only one
bit from the previous address.

And the ‘pingpong’ sequence results in addresses as depicted in figure 5.

o 1 2 3 N-4 N-3 N-2 N-1
e o o o ... e o o o

T“MM

Figure 5: pingpong addressing sequence.

If required, the generated sequence can be stepped by specifying a ‘step’ factor.

(step) == (integer) | (1
(empty)
For example, the addressing sequence ‘2linear’ results in the addresses ‘0,2,4,6,..." being generated.
The ‘direction’ can be increasing, denoted by a plus ‘+’, decreasing, denoted by a minus ‘-’ or unspecified,

denoted by a plus-minus ‘+’.

(direction) = + | (18)
- |
+

Increasing and decreasing directions always generate opposite addressing sequences.

For example, the addressing sequences ‘+gray’ and ‘—gray’ result in the addresses ‘0,1,3,2,6,7,5,4’ and
‘4,5,7,6,2,3,1,0 respectively (assuming an eight word length addressing dimension). The sequence ‘+gray’ is
one the above two sequences; which one is not specified.

Other addressing sequences can be defined when necessary. In most cases it is sufficient to define and de-
scribe new ‘addressing sequence’ keywords to be used with the predefined addressing types of the existing march
elements. Often this can be accompliced comfortably by using the sequence operator S, discussed in section 4.9.
Sometimes additional addressing sequence specifiers are required. Often these will have the form of an assign-
ment. For example, an alternative way to specify a step in the generated addressing sequence could be to use
a new addressing sequence specifier ‘step’ like below:

(addressing sequence specifier)siep = step = (integer) | (19)
(empty)

For example, using this feature the addressing ,,cq AT247€97 could also be written as ‘y,.q. ATHnearister=2,
If it concerns a complete new category of tests, a new march element should be defined.

To improve the readability of test specifications and to meet the currently practiced notations, shortcuts for
addressing notations are defined. The tables 1, 2, 3, and 4 give an overview.

Some examples are given in table 5.



ﬁ mca-Ai
ﬂ mcaA+
’U’ mca-A_

Table 1: Shortcuts for ‘mca’ addressing types.

i T'OUI*A:I: Ans ColumnA:t
T rowA+ — columnA+
»L rowA_ — columnA_

Table 2: Shortcuts for ‘row’ and ‘column’ addressing types.

4.1.4 ‘Addressing ranges’

In general, an ‘addressing range’, placed at the lower right of the addressing symbol ‘A’, consists of more
‘addressing range specifiers’, separated by semicolons ‘;’.

(addressing range) = (addressing range specifier){;(addressing range specifier)} | (20)
(empty)
The addressing range allows parts of the memory to be included or excluded from the addressing. If omitted,
the addressing is complete.
For normal march elements to each addressing sequence an addressing variable can be assigned for later

use. An ‘addressing variable assignment’ consists of an ‘addressing variable’ followed by an equal sign ‘=’; then
follow the ‘addressing range specifiers’.

(addressing ra'nge)normal march element 1= (21)
(addressing variable assignment)(addressing range specifier){;(addressing range specifier)}

(addressing variable assignment) ::= (addressing variable) =| (22)

(empty)

(addressing variable) == a|b]|...z (23)

If the ‘addressing range’ contains only an ‘addressing variable assignment’ and no ‘addressing range specifiers’,
the equals sign ‘=’ can be omitted.
An ‘addressing range specifier’ can be a ‘base cell exclusion’, a ‘range inclusion’, or a ‘range exclusion’.
(addressing range specifier) == (base cell exclusion) | (24)
(range inclusion) |
(range exclusion) |
(empty)

A ‘base cell exclusion’ starts with a negation sign ‘—’ and consists of one ‘ expression’, specifying the complete
‘address’ of the to be excluded base cell, or two ‘expressions’, separated by a comma ‘), specifying the ‘row’

N diagoAT || | diagr AT
N | diago AT || | diagt AT
N | diagoA™ || /| diagt A

Table 3: Shortcuts for non-wrapped diagonal addressing types.



& dz'ang-Ai 1] diaglwA:t
\1 diangA+ \/ diaglu)A+
”\ dz'a,ng-A_ /‘ diagl'wA_

Table 4: Shortcuts for wrapped diagonal addressing types.

2linear A—2lmear
mca
T2p0w6r4 A+2power4
Tow
(_?gray columnA?I:gray
ingpon —pingpon,
f\P gpong dz'agOA pingpong
3linear 3linear
\/ diaglwA+

Table 5: Ezample shortcut notations.

and ‘column’ of the to be excluded cell.

(base cell exclusion) = —(address) | (25)

—~(row),(column)

(address) == (expression) (26)
(row) ::= (expression) (27)
(column) == (expression) (28)

The base cell exclusion of a one-dimensional addressing requires an expression specifying a complete address. To
specify a row, only an expression specifying a row address or an expression specifying a complete address (the
row address will be derived) can be used. In the same way, to specify a column, only an expression specifying
a column address or an expression specifying a complete address (the column address will be derived) can be
used.

For example, the following is illegal:

T (o (@-a (--))

Column address a does not define a base cell address in a one-dimensional addressing of the memory cell array.

Below we give an example of a base cell exclusion that is a variant of the one seen in section 4.1.1. First the
memory cell array is filled with 0’s. Then a base cell with value 1 walks through the memory. To keep track
of its address, it is assigned to the addressing variable a. For each base cell, all cells in its row are checked for
0, except the base cell itself. After every check the base cell is read. The read operation subscripted with the
addressing variable will be performed to the specified address, in this case address a.

T (w0); §a (w1, 4~ (r0,741),w0)

More on the syntax of memory operations and subscripting these with operation addresses can be found in
section 4.2 and 4.3.

A ‘range inclusion’ can be specified by an ‘address range’, consisting of two ‘expressions’ and a range sign ‘..’
in between, denoting the borders of a one-dimensional range. Or by two ranges, specifying a ‘row range’ and
‘column range’ in a two-dimensional memory.

(range inclusion) = <{address range) | (29)

(row range),(column range)

(address range) = {expression)..(expression) (30)



(row range) == (expression)..(expression) (31)

(column range) = {expression)..(expression) (32)

For example, writing a 16 x 16 block of 1’s in a memory cell array of all 0’s, as depicted in figure 6, is notated
as:

$ (w0); P32..47,16..31 (wl)

(3216) _ (32.31)

(47,16)  (47,31)

|| [

Figure 6: a 16 x 16 block of 1’s in a memory cell array of all 0’s.

A ‘range exclusion’ is expressed by preceding a ‘range inclusion’ with a negation sign ‘—’.
(range exclusion) == —{range inclusion) (33)

Obvious but for completeness: depending on the first addressing range specifier, the complete memory is
included or excluded at start. If the first addressing range specifier is a base cell exclusion or a range exclusion,
the complete memory is included initially; if it is an inclusion, the complete memory is excluded at start.

So, for example, the pattern as in figure 6 can also be obtained by first writing all 1’s to the memory cell
array, and then writing 0’s to it excluding the block:

$ (wl); §-32..47,16..31 (w0)

The syntax of an ‘expression’ is not further specified. It should be an arithmetic expression, in which the
addressing variables defined in the current scope can be used. Depending on the desired result (a complete
address in a one-dimensional memory, or a row or column address in a two-dimensional memory), the complete
address of the addressing variables or only the row or column part is used.

(expression) = ... (34)

Recognize that it is possible to specify addresses that do not exist in the memory. For now, invalid operations
are simply not applied. If other behaviour is required, for example a wrap-around of the addresses, a new global
operation (see section 4.8) should be defined.

4.2 Multi-port memory operations

To test multi-port memories, ‘memory operations’ can consist of several ‘port operations’, separated by colons :’.
All port operations in a memory operation will be applied to the memory simultaniously through the associated
ports, starting with port 0. If the same set of port operations should be repeated, these can be preceded by an
‘“integer’ specifying the number of ‘times’.

(memory operation) = (times){port operation){:(port operation)} (35)
(times) = (integer) | (36)
(empty)

10



If necessary, the ‘port’ of a ‘port operation’ can be specified explicitly by superscripting the ‘operation’. If no
port is specified, the operation is applied to the next port.

(port operation) = (operation)P°T) (37)
(port) = {integer) | (38)
(empty)

For example, the Towalk?2 test walks a base cell with value 1 through a memory cell array containing all 0’s.
For each base cell, the base cell itself is checked, a 1 is written and then read back 16 times, before continuing
with the next base cell. Then, the test is repeated using a base cell set to 0 in a memory cell array containing
all 1’s.

{§ (w0); ¢ (r0,wl, 1671, w0); § (wl); § (r1l,w0,16r0,wl)}

Another example; a march element that writes a 0 to each memory cell, and at the same time checks through
port 1 if the previous cell indeed has become 0, would be specified like this:

ﬂff”e” (w0 : 7r4_10)

And another example. This march element writes a 0 and then writes a 1 thirty times to the next word
using port 3, while at the same time checking if the current word still contains a 0.

flinear (w0, 30r0 : w) 1 1)

4.3 Operations on multi-bit words

Most memories address a word that consists of B bits, where B > 1. To allow for operations on multi-bit word
memories, a multi-bit word ‘operation’ is defined. Such an operation will be an ‘r’ (read operation) or ‘w’ (write
operation), followed by one or more ‘binary digits’ ‘0’, ‘1’ specifying the ‘expected data’ or the to be written
‘data’. So the single-bit word operation already introduced in the march test notation (see section 3.1) is a
special case of the multi-bit word operation. The first digit corresponds to the most significant bit (mosb) and
the last digit corresponds to the least significant bit (lesb). In case of a read operation the expected data may
be omitted. An unused port in a memory operation is denoted by a ‘nop’ operation.

The ‘operation address’ subscript can be used to operate on other cells than the current one addressed. The
possibility to do this is required by tests like Butterfly. An operation address can consist of one expression
specifying an ‘address’ in a one-dimensional memory, or two expresssions specifying the ‘row’ and ‘column’
address in a two-dimensional memory.

(opemtion) n= T(operution address)(expeCted data) | (39)

W(operation address)(data) |

nop
(operation address) = (address) | (40)
(row),(column) |
(empty)
(expected data) == (binary word) | (41)
(empty)
(data) == (binary word) (42)
(binary word) == {binary digit){{binary digit)} (43)

11



(binary digit) == 0]1 (44)

A B-bit word must be specified by 1 or B bits. A one-digit operation applied to a multi-bit word will be
expanded to B identical bits (a 0 will be expanded to B 0’s; a 1 will be expanded to B 1’s). Other possible
expansion methods, for example Marching and Walking data backgrounds for detection of intra-word coupling
faults [Treuer, 1993 and 1993a], should be specified explicitly, or require an extension to the OMTL specification
language.

For example; a march element writing and checking a Marching 1 pattern in a 4-bit word memory can be
specified like this:

flinear (44,0000, r, w1000, r, w0100, 7, w0010, 7, w0001, r, wO000)

With an offset operation, addresses can be used to access neighborhoods of a base cell. In the following
example all cells are set to 0. Then a base cell set to 1 walks through the memory cell array. For each cell a
type 1 neighborhood (consisting of four cells) is read before continuing to the next base cell.

1} (’U)(]), ﬁa (’U)]., Ta,a—i—loa ra—i—l,aoa ra,a—loa Ta—l,aoa ’UJO)

4.4 Three-dimensional memories

Often the core of memories consists of more than one memory cell array. The correct array is selected by a third
address decoder, the array decoder. Addressing the various arrays can be specified using an ‘array addressing’,
which addressing type is ‘array’. Further, it has the same syntax and possibilities as the normal addressings.

(addressing sequence)( ) (45)

(array addressing) = aTmyA(addressmg range) L--)

For example, a Zero-One or MSCAN test [Abadir, 1983] performed to all arrays sequentially is notated as:

{array AT (§ (w0),§ (r0), T (w1),$ (r1))}

Since the main purpose of a three-dimensional implementation is to speed up test time using the available
parallellism, arrays will mostly not be addressed sequentially, but will be tested in parallel. Then the parallel
operator discussed in section 4.9 can be used.

4.5 Tiles

Using multi-bit word operations allows for specifying background patterns within a word. It is also possible
to use patterns that cover more than just one word; these are called “tiles”. Tiles are required for tests for
Neighborhood Pattern Sensitive Faults (NPSF’s). The memory cell array is assumed to be covered completely
with tiles with a rectangular shape. Within each tile local operations are performed; these are read and/or
write operations applied to a particular location within the tile.

For example, a traditional test that can only be specified using tiles is the Checkerboard test [van de Goor,
1991]. It divides the memory cell array into two groups of cells as shown in figure 7. A 1 is written to all 1-cells

11212
211121
11212
211121

Figure 7: Checkerboard pattern.

and a 0 to all 2-cells. After completion all cells are read. The whole process is then repeated with Os in all

12



2x2 tile

word 0,0 | word 0,1

word 1,0 | word 1,1

Figure 8: 2 x 2 tile for the Checkerboard test.

1-cells and 1s in all 2-cells. A tile with a height of 2 words and a width of 2 words is the minimum size required
to contain the repetitive pattern needed for the Checkerboard test. The tile consists of four one-bit words as
shown in figure 8. The complete specification of the Checkerboard test is given in section 5.

A ‘tile march element’ consists of an addressing specification, followed by a ‘tile operation’ between paren-
theses ‘(...)". The tile addressing specification ‘A’ is accompanied by an ‘addressing sequence’ and an
‘addressing range’

{addressing sequence) (1o operation)) (46)

(tile march element) ::= tileA(uddressmg range)

The ‘addressing sequence’ of a ‘tile march element’ consists of a ‘tile addressing sequence’ followed by the
‘tile size’.

(addressing sequence)iite march element == (tile addressing sequence)(tile size) (47)

The ‘tile addressing sequence’ can be one-dimensional (specified by the keyword ‘mca’ preceded by a ‘direction’)
or two-dimensional (specified by ‘row’ and ‘column’ keywords).

(tile addressing sequence) = (1 dimensional tile addressing sequence) | (48)

(2 dimensional tile addressing sequence)
(1 dimensional tile addressing sequence) == (direction)mca (49)

(2 dimensional tile addressing sequence) := (direction)row (direction)column | (50)

(direction) column,(direction)row

Note the resemblances and differences with the addressing sequence of the normal march elements. The ad-
dressing of tile march elements is always linear.

The ‘tile size’ specifies, between square brackets ‘[...]°, the height (‘number of rows’) and width in words
(‘number of columns’) of the tile.

(tile size) == [(number of rows),(number of columns)] (51)
(number of rows) := (integer) (52)
(number of columns) == (integer) (53)

For example, a tile march element writing a 1 to all (0,0) and (1, 2) locations of a 2 x 3 tile pattern, would
be specified by a notation like this:

A:I:mca[2,3] (

tile Wio,0] 1, Wi1,2] 1)

Again we introduce shorter notations for the addressing specifications, which look very similar to the ones
already introduced in section 4.1. A one-dimensional tile addressing can also be specified using a ‘", ‘11", ‘I’
symbol; a two-dimensional tile addressing can be specified using the ‘}’, “7, ‘]’ and ‘¢’, ‘=’, ‘=’ symbols
together.
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So the above example could also be written as:

322 (wio,01, wyi 9y1)

A tile march element writing 0’s to all (0,1) locations of a 2 x 2 tile pattern (as e.g. needed for the
Checkerboard test), first addressing the rows in positive direction and then addressing the column in negative
direction, would be written as:

tileA+row,—column[2,2] (w[O 1]0)
but also, using the shorter notation, as:
1122 (wpp 110)

The ‘addressing range’ of a ‘tile march element’ is a restricted version of the addressing range of a normal
march element. The base cell exclusions and one-dimensional range exclusions and inclusions are left out.

(addressing range)iite march element = (addressing range specifier){;{addressing range specifier)}  (54)
(addressing range specifier) = (tile range inclusion) | (55)
(tile range exclusion) |
(empty)
(tile range inclusion) ::= (row range),(column range) (56)
(tile range exclusion) = —(tile range inclusion) (57)

In above examples we have already seen some of the syntax of the tile operations. Here follows the formal
specification. A ‘tile operation’ consists of ‘local operations’, separated by comma’s ,’.

(tile operation) ::= (local operation){,(local operation)} (58)

A “local operation’ starts with an ‘r’ (read) or ‘w’ (write), subscribed with the address (‘location’) of the word
within the tile, followed by the ‘data’ word.

(local operation) ::= T (15cation){ezpected data) | (59)
W(location) <data)

The ‘location’ to which the local operation should be applied consists of the ‘row offset’ and ‘column offset’
within the tile.

(location) == [(row offset),(column offset)] (60)
(row offset) := (integer) (61)
(column offset)y == (integer) (62)

Local operations implicitly assume the use of the first suitable port; combinations of tiles and multi-port
operations are neither possible nor required, since tiles are used to detect faults in the memory cell array and
multi-port operations address problems in the decoder logic.

Reading and writing sequences (pseudo march tests) can be done too using tiles. For example, writing a
pattern 011, notation: w0 | 1 | 1, can be done by specifying a tile with a height of 1 word and a width of
3 words. The tile march element would look like this:

1}[173] (w[o,o]o, 'U)[O,l]oa ’I,U[O, 2]1)

To do the same to a memory cell array with two bits per word, a 1 x 3 tile containing 3 words of 2 bits is
required:

3[173] (w[0,0]017 11][0’1] 107 U}[O, 2]11)
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4.5.1 Special cases: type 1 and type 2 tiling groups

To detect NPSF’s, tests especially designed for this divide the memory into adjacent tiling groups. Figure 9 and
10 show the tiling groups for often used type 1 and type 2 neighborhoods respectively. In traditional tests for

0
2
4
1
3

AN O] W
w

ANV O|lW] P

Figure 9: Type 1 tiling groups.

ol | v|o| o N
N AR~ R
ol v|o| g~

SUN I N N N N
o|lw|o|lo| w| o

| W OoO]lo | w| O

Figure 10: Type 2 tiling groups.

NPSF’s, operations are applied to all cells having the same number. For the type 1 and type 2 neighborhoods
two keywords ‘typel’ and ‘type2’ are defined that can be specified as the ‘tiling groups type’ instead of the
normal ‘tile size’.

(tile size)iiting groups = [(tiling groups type)l (63)
(tiling groups type) == typel | (64)
type2 |

Now the ‘location’ of a local operation consists of only one ‘indez’, specifying the cell number within the tiling
group.
(location) = [index] (65)

(index) ::= (integer) (66)

For example, a tile march element writing a 0 to all 4 and 5 locations in a type 2 tiling group pattern, first
addressing all columns and then the row in positive direction, would be specified like this:

tPe2l (4110, w5 0)
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4.5.2 Defining new tiling groups

When necessary, new tiling groups with their own ‘tiling group type’ keyword can be defined by specifying a
‘tile size’ and a ‘location numbering’.

(tiling group type) = (tile size)(location numbering) (67)

The ‘location numbering’ consists of a list, between parentheses ‘(...)’, of ‘integers’, separated by comma’s ‘,’;
specifying the location numbers within the tile from left to right and from top to bottom (actually, both in
positive direction).

(location mumbering) == ((integer){,(integer)}) (68)

Although tiling groups can be defined within the test, tiling group type definitions will often precede the actual
test.
The type 2 tiling groups as depicted in figure 10 are defined as a one-to-one match:

type2 = [3,3](0,1,2, 3,4,5, 6,7,8)

To define the type 1 tiling groups as depicted in figure 9, a 5 x 5 tile is required, as can easily be seen from
figure 11. The definition of the type 1 tiling groups can be specified as:

0
oj1 2 3 0
1 2 3,401 2 3
41011 2 3|41]060
0|112 3|4|0|1}|2 3
1 2 3|l]4|0|1 2 3]4]|0
41011 2 3|4(0]J1 2 3
1 213|401 23| 4
41011 2 3|4/0
1 2 3|4 1 2 3
4 4

Figure 11: Tile for type 1 tiling groups.

type‘l = [57 5](07 ]‘J 27 3’ 4’ 2) 37 4’ 0’ 1’ 47 0’ ]" 2’ 37 ]‘7 2’ 3’ 4’ 07 37 47 0’ 1’ 2)
The checkerboard pattern as depicted in figure 7 would be specified as:
checkerboard = [2,2](1,2, 2,1)

4.6 Line mode tests

Some memory chip designs already have built-in facilities for testing purposes. These can be exploited using
‘special operations’, or using “special” ‘march elements’; as is the case, for example, with the ‘pseudo random march elements’
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for notations involving pseudo random memory tests (see section 4.7).
In this section ‘line operations’ are introduced [Inoue, 1987 and Matsuda, 1989]. These operations act on
complete rows in the memory cell array.

(special operation) == (line operation) | (69)

A read ‘line operation’ (‘iiner’) reads all bits in the current row, using an ‘interleaving’ and ‘offset’. The
“interleaving’ defaults to 1, the ‘offset’ to 0. If the ‘expected data’ is a 0, all the selected bits in the row are
ORed; if it is a 1, all bits and ANDed. A write ‘line operation’ (‘;inew’) writes all bits in the current row, again
using an ‘interleaving’ and an ‘offset’ with the same defaults.

(line operation) = lmer(mte”e“”m”i(oﬁ“t)(e:cpected data) | (70)
(interleaving),(offset) (data)

lineW
(interleaving) == {integer) (71)
(offsety == ({integer) (72)
(expected data)iine operation == (binary digit) | (73)
(empty)
(data)iine operation = (binary digit) (74)

For example, the following march element writes and reads 1’s to and from the memory cell array, accessing
complete lines:

i (linBU)]-;line 7'1)
Another example, now writing and reading 0’s to and from a memory cell array filled with 1’s, using an
interleaving of 4:

. 4,0 4,0 4,0 4,1 4,1 4,1 4,2 4,2 4,2
i (linew:l-)yi (linew O;line r O;line w ]-Jl'i'n,e w Oaline r Oaline w ]-;lz'ne w Oal'i'n,e r O;line w 17

4,3 4,3 4,3
lineW ™’ Oaliner ’ Oalinew ’ ]-)

4.7 Pseudo random tests

Pseudo random tests are a completely different class of memory tests. Most notable is that the test specification
is depending on the number of rows and columns of the memory cell array (i.e. the size of the address decoders)
of the memory under test. None of the tests we have seen previously has this dependance (although it is possible
to specify non-relative borders in the expressions of the addressing ranges).

A ‘pseudo random march element’ consists of an addressing, followed by ‘pseudo random operations’; sep-
arated by comma’s ‘,’; between parentheses ‘(...)’, or of a ‘pseudo random crc operation’.

(pseudo random march element) ::= (75)
pseudo randomA§Z§3:§§§§Z§ ig'f:;gwe) ({pseudo random operation){,(pseudo random operation)}) |

(pseudo random crc operation)

The ‘addressing sequence’ of a pseudo random march element consists of two addressing sequence specifiers:
the first specifying the ‘pseudo random addressing sequence’, and the second specifying the ‘pseudo random generator’.

<addr655ing Sequence)pseudo random march element *— (76)
(pseuso random addressing sequence);{pseudo random generator)
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A ‘pseudo random addressing sequence’ can be an ordinary ‘1 dimensional pseudo random addressing sequence’

or ‘2 dimensional pseudo random addressing sequence’. These have the same syntax and meaning as the tile ad-
dressing sequences defined in section 4.5. Or it can be a ‘pseudo random pseudo random addressing sequence’,
in which the addresses are determined by taking a ‘pseudo random pattern’ from the pseudo random generator.

(pseudo random addressing sequence) = (I dimensional pseudo random addressing sequence) | (77)
(2 dimensional pseudo random addressing sequence) |

{pseudo random pseudo random addressing sequence)

(1 dimensional pseudo random addressing sequence) == (direction)mca (78)
(2 dimensional pseudo random addressing sequence) ::= (direction)row,{direction)column | (79)
(direction) column,(direction)row |
(direction) row |
(direction) column

(pseudo random pseudo random addressing sequence) = (pseudo random pattern) (80)

A ‘pseudo random pattern’ is a string of 0’s and 1’s from which parts can be derived from the pseudo random
string generated by the pseudo random generator. It consists of ‘pseudo random pattern elements’, these being
‘pseudo random words’ and ‘pseudo random digits’.

(pseudo random pattern) == (pseudo random pattern element){(pseudo random pattern element)} (81)

(pseudo random pattern element) ::= (pseudo random word) | (82)
(pseudo random digit)

A ‘pseudo random word’ can be a part taken from the pseudo random string, specified by a question mark ‘?’
subscripted with the ‘begin indez’ and ‘end indez’ of the desired pseudo random substring (the lesb is number 0).
Or it can be just an ordinary ‘binary word’.

(pseU’dO random 1U07’d> n= ?(begin index),(end index) | (83)

{binary word)
(begin index) = (integer) (84)

(end index) == (integer) (85)

A ‘pseudo random digit’ can be a digit taken from the pseudo random string, specified by a question mark ‘7’
subscripted with the ‘indez’ of the desired digit in the pseudo random string. Or it can be a simple ‘binary digit’.

(pseudo random digit) == ?(indes) | (86)
(binary digit)

For the next examples, suppose the pseudo random string currently has the value 11001010. Then the pseudo
random pattern ?7 selects bit number 7 (note that the lesb has index 0), being a 1. 741 selects the substring
0101. Swapping the indices, i.e. ?; 4, selects the same substring, but mirrors it, here resulting in 1010.

An example combining with binary digits and overlapping selections: the pseudo random pattern 117,007 4
results in 11000100.

18



The ‘pseudo random generator’ can be specified by the ‘seed’, the ‘binary word’ that specifies the pseudo
random string to start with, and a ‘characteristic polynomial’, that specifies the next pseudo random string
from the current one.

(pseudo random generator) ::= (seed),(characteristic polynomial) (87)

(seed) == (binary word) (88)
The ‘characteristic polynomial’ is not further specified; often it will be something like ‘1 + 2 + 2% 4+ z*’.
(characteristic polynomial) == ... (89)
For example, a 4 bit pseudo random generator could look like this:
1000, z + 2*

The ‘addressing range’ of a pseudo random march element is always empty.

<addr€55ing ra'nge)pseudo random march element 17— (empty) (90)

A ‘pseudo random operation’ can be a ‘r’ (read), possibly followed by a ‘pseudo random pattern’ (mostly
not) specifying the expected data, or a ‘w’ (write) followed by a ‘pseudo random pattern’ specifying the to be
written data. Or a ‘pseudo random operator’, in which case the operation itself (a read or a write operation)
is pseudo random. The following ‘pseudo random pattern’ is ignored in case the pseudo random operator turns
out to be a read operation. The last pseudo random operation is the ‘pseudo random crc operation’, which
control the crc logic often used with pseudo random BIST’s (Build-In Self Tests).

(pseudo random operation) := r(pseudo random pattern) | (91)
r
w(pseudo random pattern) |
(pseudo random operator)(pseudo random pattern) |
(pseudo random crc operation)

The ‘pseudo random operator’ consists of a special symbol ‘L’ subscripted with the ‘indez’ of the digit from

the pseudo random string that will be driving the memory’s R/W control line.

(pseudo random operator) = L (92)
W (indez)
For example, a complete pseudo random march element with a pseudo random pseudo random addressing
sequence for a 2 bit memory could look like this:

?4,074,0;0111,z+422
pseudo random-A 4074,03 S (’11)?170,7')

Another example, using the pseudo random operator:

A+mca;1010,1+z3 (,w7

r
pseudo random <2,1, — -3,2» T)
w2

A memory with CRC logic (Cyclic Redundancy Check) and operating in compress mode works the outputs
of pseudo random tests into a response signature. After completion the resulting response signture is compared
against the value known to be correct. A ‘pseudo random crc operation’ can be a ‘pseudo random crc reset operation’,
notated as ‘crc¢ R’, that resets the pseudo random crc counter. Or a ‘pseudo random crc check operation’ that
consists of the keyword ‘cre’ followed by the ‘expected data’.

(pseudo random crc operation) = (pseudo random crc reset operation) | (93)

(pseudo random crc check operation)
(pseudo random crc reset operation) == crc R (94)

(pseudo random crc check operation) := crc{ezpected data) (95)
So, a typical CRC BIST will have the following pattern:

crcR, ..., crc
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4.8 Global operations

‘global march elements’ contain ‘global operations’ that affect the entire memory.
(global march element) ::= {global operation) (96)

A ‘global operation’ can be a ‘reset operation’, a ‘delay operation’, a ‘clock operation’; a ‘Vee operation’; or a
‘temperature operation’.

(global operation) := (reset operation) | (97)

delay operation) |

(
(
(clock operation) |
(Vee operation) |
(

temperature operation)
A ‘reset operation’, specified by an ‘R’, resets the memory: all parameters are set to their power-up value.
(reset operation) := R (98)

Some faults in the memory may take time to develop, e.g. data retention faults [Dekker, 1988]. Tests to
detect these require time to elapse without read or write operations being applied to the memory. Until now
each operation took exactly one cycle. A ‘d’ operation can be used to specify the elapse of one or more (as
specified by ‘times’) time cycles. Using the ‘D’ operation followed by a ‘time’ specification, a certain amount
of time can be passed. The exact notation of ‘téme’ is not further specified; for example, it may be notated like
‘250ms’. A ‘D’ operation without any time specification will cause enough time to pass as needed for all effects
to become extinct.

(delay operation) := (times)d | (99)
D{time)

(time) == ...| (100)
(empty)

For example, a march element that waits three memory cycles before reading 11 from each word of a two-bit
word memory would be specified like this:

$ (3d,r11)

Setting the clock speed with which the memory is operated can be done using the ‘clock operation’, consisting
of a ‘C” followed by the ‘clock speed’ itself. The exact notation of the ‘clock speed’ is not further specified.
Mostly, it will just consist of a real value followed by a ‘MHz’ sign, i.e. ‘100MHz’. If no ‘clock speed’ is specified
explicitly, the clock speed will be reset to its normal value.

(clock operation) == C{clock speed) (101)

(clock speed) == ...| (102)
(empty)

For example, a test writing 1’s to the memory array at a speed of 120MHz, and then reading at 100MHz,
will be specified like this:

{C120MHz; { (wl); C100MHz; { (r1)}

Sometimes in a test, V.. is lowered to accelerate the appearing of certain faults. The ‘Vec operation’ can
be used to specify V.. Ve is set to the value following the ‘ Vee’ keyword. The exact notation of ‘ Vee’ is not
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further specified. Mostly, it will just consist of a real value followed by a ‘V’ sign, i.e. ‘2.0V’. If no ‘Vec’ is
specified explicitly, V.. will be reset to its normal value.

(Vee operation) = Vee{Vee) (103)

(Vee) == ... (104)
(empty)

For example, writing a 1 to a cell, lower V. to 1.8V for 100ms, and then check if the cell still contains the
1, would be specified like this:

$ (w1, V,.1.8V, D100ms, Ve, 1)

Another method to stress a memory chip to issue certain faults is to increase the operating temperature.
This can be specified using a ‘temperature operation’. The temperature is set to the value following the ‘77
keyword. The exact notation of the ‘temperature’ is not further specified. Mostly, it will consist of a real value
followed by a ‘K’ (Kelvin), ‘C” (Celsius) or ‘F” (Fahrenheit) sign, i.e. ‘70C’. If no ‘temperature’ is specified
explicitly, the operating temperature will be reset to its normal value.

(temperature operation) := T(temperature) (105)

(temperature) == ...| (106)
(empty)
For example, a march element executed on a memory at 140°C could look like this:
T140C; { (w1,100r1)

4.9 The sequential and parallel operators

Often in memory tests, similar looking parts can be recognized that only differ in addressing direction or have
inversed data. To facilitate for shorter notations for these cases, a ‘sequential operator’ is available. In its most
general form, it consists of a calligraphic ‘S’ together with a running index and one or more expressions using
this index. The resulting value is assigned to a ‘variable’, a member of the lowercase Greek letters, and can be
used in the test within the curly braces ‘{...}".

(sequential operator) == (variable assignment)S,fgﬁJ ﬁﬁﬁﬁ%ﬁ%ﬁz(ea:pression){l(expression)}i...i (107)
(variable assignment) = (variable) = (108)
(variable) == a|f]|...w (109)

Most of the times, a simpler notation can be used. For example, the assignment of the values 0 and 1 to the
variable § can be specified as: Ss=,1{...}.

The sequential operator can also be used to define addressing sequences. For example, the pingpong sequence
can be defined as follows:

iN_
pingpong = Sofi\; 1oz,N —1-«

where N is the length of the addressing dimension. This results in the sequence:
SO,N—-1,1,N—2,2,N—3,...

Nowadays most memories contain dedicated hardware for testing purposes. Since the tests are often paral-
lelized, furthermore a parallel operator is defined. It has the same syntax as the sequential operator, except the
calligraphic ‘P’ replacing the ‘S’. The in this way specified test parts are executed in parallel.

end running index

(parallel operator) = (variable assignment)Pyco:n vunning indez

(ezpression){,(ezpression)}{...}  (110)

For example, to run a test on all arrays of a three-dimensional memory simultaniously, the parallel operator
can be used.

Parray{---}
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5 Examples

In this section we will provide a set of examples to demonstrate the constructs and expressive power of OMTL.
Where available, well known memory tests are used.

o MATS+ [Nair, 1979 and Abadir, 1983]:
{$ (w0); 1+ (r0, wl); | (r1,w0)}

In a memory cell array containing all 0’s a 1 is written to each cell after checking its contents. Then in
reverse order a 0 is written into each cell after verifying that it contains a 1.

o Sliding Diagonal [van de Goor, 1991]:

{$ (w0); 7 (N (w1), T (r), x (w0));
¥ (w1) 2" (N (w0), T (r),  (wl))}

The memory cell array is filled with 0’s. Then a diagonal is set to 1 and the complete memory cell array is
checked. This is applied for each diagonal in the memory cell array. After completion the test is repeated
with 0’s in the diagonal and a background of all 1’s.

e Walking 1/0 [Breuer, 1976]:

{:II (’lUO);ﬁa (U)laﬂj—*a (r0), 71, w0);

$ (wl); o (w0,—q (r1),r0,wl)}
The memory is filled with 0’s. The base cell walks through the memory cell array and is set to 1. For
every base cell set to 1, every other cell in the memory cell array is read. Then the base cell is read before
continuing to the next base cell. After addressing the complete memory cell array the process is repeated

with 1’s in the memory cell array and a 0 in the base cell.
An alternative, shorter but probably less readable notation, using the sequential operator:

Sa:O,l{lI (’U)Oé); ﬁa (U)a, ﬁ—ua (m),ra, wa)}

e The GALROW test [Breuer, 1976] does the same thing as Walking 1/0, except that it reads the base cell
after each read operation from its row:

{$ (w0); Pu (w1, -4 (r0,7,1),w0);
$ (wl); o (WO, >4 (r1,740),wl)}

e The moving inversions addressing sequence used with the MOVT test [de Jonge, 1976] requires the intro-
duction of a special addressing sequence. The ‘pmovi’ ‘sequence’ (partial MOVI) specifies an addressing
sequence increasing at the index specified by the ‘integer’ following the ‘pmowvi’ keyword, using end-around
carry. If the ‘pmovi’ march elements are sub march elements of a march element with a ‘movi’ ‘sequence’,
which generates all address indices for the partial moving inversions, the index ‘integer’ following the
‘pmovi’ keyword is omitted.

{8 0); ™ (7™ (10, w, r1);47™ (11, w0, 70); Y7V (10, wl, 71); $7™ (r1,w0,70))}
e Butterfly [van de Goor, 1991]:

{ﬂ: (’IIJO), ﬁa (’U)]., ra,a—i—loa Ta—i—l,aoa Ta,a—loa ra—l,aoa wO);
$ (wl); o (W0, 74,0411, 7a41,01,70,0a-11,70—1,01,wl)}

All cells are set to 0. A base cell set to 1 walks through the memory cell array. For each base cell a type 1
neighborhood (consisting of four cells) is read before continuing to the next base cell. Then the complete
process is repeated with the memory cell array set to 0 and the base cell set to 1.
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The Hammer test issues a base cell set to 1, walking over the diagonal of the memory cell array containing
all 0’s. Each base cell is written 1000 times. Then the row and column of the base cell, and the base cell
itself, are checked, before continuing to the next base cell. After completion the test is repeated using a
base cell with value 0 in a memory cell array containing all 1’s.

{8 (w0); e (1000w, 34 (r0), 71,1y (r0),r1,w0);
¥ (w1); e (1000w0, <34 (r1),70,3-p (r1),r0,wl)}

A multi-port test:

{fa (w0 :nop : 7410);ftq (Wl : 74410 :74-11); g (WO : 74411 : nOP);
Yo (w0 :n0p : 74410); Yo (Wl 710 :74411); 44 (w0 :74—11:n0p)}

This test walks through the memory cell array writing throught port 0, and reading through ports 1 and
2 from the cell that will be written next and the cell that has just been written.

The Checkerboard test [van de Goor, 1991] can be specified using the checkerboard tile with height 2 and
width 2. The algorithm looks like this:

{ﬂ:[checkerbourd] (w[o]l’w[llo);ﬁ:[checkerboard] (T[O]]-a ,,.[1]0);
ﬁ[checkerboard] (w[o]o’w[l]l);Il[checkerboard] (T’[o]O,T[l]l)}

A MAMB test (Multiple-Arrays, Multiple-Bits, [van de Goor, 1991]):

,PaTra.y{i (linew2’00>line w2’11);i (liner2’0071ine 7'271]-);
i (linew2701;line w2’10);i (linerzol;line 7'2710)}

For each array in parallel, a pattern of alternating 0’s and 1’s is written and read using line mode access.
Then the same test is repeated with the 0’s and 1’s swapped.

March G [van de Goor, 1993]:

{$ (w0); 1+ (r0, w1, rl, w0, 70, wl);f (r1, w0, wl); § (rl, w0, wl, w0);{ (r0, wl, w0); D;§ (r0,wl,rl); D;
$ (r1,w0,70)}

A data retention test:

{$ (w0); V.2.0V'; D250ms; Vee; § (r0);
$ (wl);Vee2.0V; D250ms; Vee; § (r1)}

This test sets the complete memory cell array to 0, lowers V.. to 2.0V for 250 ms, and then checks all
cells. The test is repeated for a background of all 1’s.

Conclusions

The proposed OMTL is an extendable language and has been defined using the well established syntax notation
BNF for programming languages. It allows for the use of a uniform notation for all memory tests. The language
syntax is given in the BNF notation used for the unambigious definition of computer programming languages,
and because of that lexical analysis and parsing methods from this world can be applied to memory tests.
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Primitive operations have been introduced to allow for a high level of abstraction and to reduce the semantic
gap between the semantic world of the memory test designer and the capabilities of the OMTL language.

The OMTL constructs are based on the notation used for march tests, which has already been adopted (and
extended) by many researchers. It allows for a consistant, compact notation for march tests, pseudo march
tests, tests for neighborhood pattern sensitive faults, line mode tests, and pseudo random tests. In addition, the
memory model is allowed to be two- and three-dimensional, multi-port, and to contain B-bit (B > 1) words.

OMTL is an open notation. Memory test designers and researchers will be able to add extensions to fit their
needs. In this document enough material has been provided to enable others to build on the notation proposed
here in a orthogonal and consequent way.

The expressive power of OMTL has been demonstrated using many examples from a large variety of different
classes of memory tests. Using OMTL, the communication between designers and implementors of memory tests
will be more efficient and less error prone.
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