
Modern Commodity Hardware for Parallel Computing,
and Opportunities for Arti¯cial Intelligence

Aad O®erman
thesis project Arti¯cial Intelligence

section Cognitive Psychology
department Social and Behavioral Sciences

Leiden University
The Netherlands

Abstract

Over the last years, there has been a fundamental change in the way manufacturers of general-
purpose processors have been improving the performance of their products. Physical and
technical limitations no longer allow manufacturers to increase the clock speeds of their chips
like they did over the last decades. Performance improvements will have to come mainly from
the higher transistor count that smaller chip features are bringing. Since developments in
Instruction-Level Parallelism (ILP) are lagging, more parallelism is the only way to go.

Intel believes in many-core processors, supporting tens or hundreds of threads. After
testing the water with hyper-threading and dual-core technologies, CPU manufacturers now
have irrefutably entered the multi-core era. On the long term, general-purpose processors will
consist of tens, hundreds, or even thousands of cores.

nVidia says it is already there, with their graphics processors containing hundreds of
cores and supporting thousands of mini-threads. GPUs, currently being seperate chips on
motherboards or specialized graphics cards, are increasingly being utilized by application
programmers. For speci¯c problems they have found mappings onto these graphics engines
that result in speedups by two orders of magnitude. Manufacturers of graphics processors
have recognized this opportunity and are increasingly making their products accessible to
others than graphics programmers.

From a programmer's perspective, CPUs o®er a multi-threaded model allowing a lot of
control °ow instructions, while GPUs o®er a rigid stream processing model putting a large
performance penalty on control °ow changes. For the ¯rst, complexity is in the application
logic. Currently, new programming languages and extensions to current languages are de-
veloped, supporting both explicit and implicit parallelis m. Stream processing only works for
problems that contain massive parallelism with limited communications between elements.

AMD's Fusion strategy brings x86 cores and GPU together ontoa single die, possibly
extending it with other specialized processing engines. Meanwhile, completely new architec-
tures and topologies are being researched by Intel (Larrabee processor), IBM (Cell Broad-
band Engine), and Sun (UltraSPARC T series), all searching for the next hardware/software
paradigm.

In HPC computing, performance-per-Watt has become the most important design param-
eter. Current commodity GPUs provide a cheap computing resource where the least possible
number of transistors are dissipating power without contributing to the actual computation.
We are waiting for graphics processors to become a standard part of the product portfolio of
manufacturers of high-end computer systems. Then, standardbuilding blocks can be bought,
together with support, training and other professional services.

Although these developments in hardware bring along huge advantages for every research ¯eld
using High-Performance Computing (HPC) in general, it is of particular interest for research
in Arti¯cal Intelligence (AI). The speedup of one or two order s of magnitude that is generally
reported for all research ¯elds when using GPUs, is also representative for neural networks,
natively using massive parallel processing.

For algorithms in AI, more and more mimicing their biological originals, are massively
parallel by nature. This goes for all types of neural networks we simulate on computers,

2

but also for visual systems and all sorts of object recognition, feature extraction and other
processing that takes place on visual data.

Especially the latter promises to take big advantage of developments in graphics proces-
sors. Some researchers in this area report speedups up to three orders of magnitude. In
HPC terms this relates to the next step when DARPA (Defense Advanced Research Projects
Agency) asks companies like IBM, Cray and SGI for the development of a long-term vision
and fundamental research into the next era of HPC.

Another ¯eld that can be expected to pro¯t from these developments are robotics. The
ability to operate autonomously and independently requires intelligence, compactness and
mobility. This relates directly to higher densities (both on silicon and system level), higher
performance, and lower power consumption, all driving current developments in hardware.

Even deploying relatively small computer systems, severalresearchers in this area report
now to be able to run applications in real-time or to provide interactive visualization where
this could not be done before, presenting not only a quantitative but also a qualitative break-
through.

In combination with the continuing pressure on power dissipation and density, GPGPU
provides tremendous opportunities for robotics, and for related areas like the development of
intelligent portable devices or prostheses.

However, at this moment, GPGPU is not yet a mature technology. Over the next years,
graphics processors will become better suited to support generic stream processing applica-
tions. Work needs to be done in generic memory access and double-precision °oating-point
operations.

Furthermore, until recently, only proprietary programmin g toolkits belonging to a speci¯c
GPU were available. nVidia's CUDA toolkit has become the de facto standard, but it is not
portable. Today, all important players in this market, i.e. AMD, IBM, Intel, and Nvidia,
are supporting Apple's OpenCL programming language. However, performance is not yet
as good as CUDA's. Furthermore, source code still contains topology-speci¯c programming,
inhibiting portability of applications over various hardw are platforms.

Despite these limitations, in the near future, OpenCL will be the standard language
for GPGPU (and possibly many-core) computing. And even when applications will not be
portable, programmers will have a single language and development platform to work with.

1

Keywords: Accelerated Processing Unit, accelerator, AI, AMD, Amdahl's Law, APU,
Arti¯cal Intelligence, barrel processor, byte code, C++, C+ +0x, CBE, Cell Broadband
Engine, Cell processor, Central Processing Unit, chip manufacturing, CISC, clock speed,
Close to Metal, cluster, collective communication, Commodity, O®-The-Shelf, compiler, com-
piler directive, Complex Instruction Set Computer, Comput e Uni¯ed Device Architecture,
connectionism, Container, core, COTS, CPU, Ct, CTM, CUDA, data parallelism, Direct-
Compute, embarrassingly parallel, Fermi graphics processor, ¯ber, Floating-Point Opera-
tions Per Second, FLOPS, forward scaling, frame bu®er, functional programming, Fusion,
future, General-Purpose Computing on GPU, general-purpose processor, GPGPU, GPU,
graphics adapter, graphics pipeline, Graphics ProcessingUnit, graphics processor, Gustafson's
Law, heterogenous multi-core, high-density, high-performance, High-Performance Computing,
High-Performance Technical Computing, horizontally scalable, HPC, HPTC, HTT, hyper-
threading, ILP, imperative programming, inherently serial, instruction set, Instruction Set
Architecture, instruction set extension, Instruction-Lev el Parallelism, Intel, interactive visu-
alization, ISA, Java, Karp-Flatt metric, kernel, Larrabee p rocessor, low-power, many-core pro-
cessor, massive parallelism, memory wall, Moore's Law, multi-core processor, multi-threading,
neural network, Nexus toolkit, nVidia, OpenCL, parallelism, parallelization, performance-
per-Watt, physics engine, pipeline, PlayStation 3, Polaris research processor, portable de-
vices, POSIX Threads, power dissipation, Power processors, pragma, process, processor, pro-
cessor architecture, programmability wall, programming languages, prostheses, protothread,
Pthreads, real-time, record, Reduced Instruction Set Computer, register ¯le, RISC, robotics,
Rock processor, Rock's Law, scalability, scale-out application, scale-up application, shader,
SIMD, Simultaneous Multi-Threading, Single Instruction, M ultiple Data, SMP, SMT, SPARC
processors, speedup, SSE, stream processing, Streaming SIMD Extensions, Symmetric Multi-
Processing, Tera-scale program, Tesla computing adapters,Texture Mapping Unit, thread,
thread synchronization, Thread-Level Parallelism, TLP, TM U, topology, transistor count,
UltraSPARC processors, vector instructions, vertically scalable, virtualization, x86.

Contents

1 Introduction 9
1.1 Many-Core Processors .. 9
1.2 General-Purpose Computing on Graphics Processing Units 9
1.3 Heterogenous Multi-Core Processors 9
1.4 Opportunities for Arti¯cial Intelligence . 10
1.5 Research Questions .. . 10
1.6 Contents . 11

2 Multi-Core CPUs 12
2.1 Introduction . 12

2.1.1 Moore's Law [sidebar] . 13
2.1.2 Multiple Cores . 13

2.2 Dead-End Street . 13
2.3 Performance per Watt [sidebar] . 14
2.4 Sustainability and Power Consumption . 15
2.5 System and Datacenter Design 15
2.6 Chip Design and Manufacturing . 15

2.6.1 Rock's Law [sidebar] . 16
2.7 ILP Complexity . 16
2.8 Hardware Redundancy . 16
2.9 Workloads . 17

2.9.1 General-Purpose Desktops .. 17
2.9.2 Workstations . 18
2.9.3 Developers . 18
2.9.4 Gaming . 19
2.9.5 I/O and Network Intensive Applications 19
2.9.6 Vertically Scalable Applications . 19
2.9.7 High-Perfomance Computing (HPC) 20
2.9.8 Consolidated Workloads . 21
2.9.9 Virtualization Issues . 22

2.10 Blades and Clusters [sidebar] 23
2.10.1 COTS Clusters . 24

2.11 Amdahl's Law [sidebar] . 24
2.12 Gustafson's Law [sidebar] 25
2.13 Karp-Flatt Metric [sidebar] . 25
2.14 x86 Multi-Core . 25

2

CONTENTS 3

2.15 Heterogenous Multi-Cores 26
2.16 AMD's Fusion strategy [sidebar] . 27
2.17 Sun SPARC Architecture [sidebar] . 28

2.17.1 Vertically Scalable Workloads . 28
2.18 Vector Instructions . 29
2.19 Intel's Tera-scale Computing Research Project 29

2.19.1 Intel Polaris Research Processor [sidebar] 29
2.19.2 Memory and I/O Interfaces . 30
2.19.3 Software Tools . 30
2.19.4 Intel Larrabee Processor [sidebar] 31

3 GPGPU 32
3.1 Introduction . 32
3.2 General-Purpose Computing on GPU .. . 32
3.3 GPGPU Programming Model [sidebar] . 33
3.4 GPGPU Programming . 34
3.5 nVidia's Tesla Portfolio . 34
3.6 GPGPU Systems . 35

3.6.1 Cray CX1 . 35
3.6.2 HPC for the Workgroup [sidebar] . 36
3.6.3 Tesla Personal Supercomputer .. . 36
3.6.4 nVidia Tesla S1070 . 36
3.6.5 nVidia Tesla C1060 . 37

3.7 Future Direction in GPU Computing . 37
3.8 The STI Cell processor . 38

3.8.1 2000 PlayStations [sidebar] 39

4 CPU/GPU Comparison 40
4.1 The LOFAR Software Telescope [sidebar] 40
4.2 GPGPU for LOFAR . 41

5 Programming Models 44
5.1 Introduction . 44

5.1.1 Parallelizing Your Code . 44
5.1.2 Automatic Parallelization . 45
5.1.3 Forward Scalability . 45

5.2 Threads . 45
5.2.1 Software Parallelism [sidebar] 46
5.2.2 Thread Synchronization . 47
5.2.3 Atomic Operations . 47
5.2.4 Deadlocks . 47
5.2.5 The Dining Philosophers Problem [sidebar] 48
5.2.6 Other Synchronization Problems . 48
5.2.7 Pthreads . 48

5.3 Functional Programming . 48
5.3.1 Functional Programming Languages 49

5.4 Clusters . 49

CONTENTS 4

5.4.1 Intel Cluster Ready program . 49

6 Programming Languages 52
6.1 Introduction . 52
6.2 C++0x . 52
6.3 Java . 52
6.4 Automatic Parallelization . 53
6.5 Intel Ct: C/C++ for Throughput Computing 53

6.5.1 Throughput Vectors . 54
6.5.2 Futures . 54
6.5.3 JIT Compiler . 55
6.5.4 Forward Scaling . 56
6.5.5 Availability . 5 6
6.5.6 Performance Penalty . 56

7 AI-Related Projects 58
7.1 Applications . 58
7.2 GNeuron . 59
7.3 GPU4Vision . 59

7.3.1 Performance . 61
7.4 AccelerEyes Jacket [sidebar] 61

7.4.1 Matlab Parallel Computing Toolbox 62
7.4.2 GPUmat and GPULib . 62
7.4.3 Evaluation . 63

7.5 Evolved Machines . 63
7.6 Comparing Biologically Inspired Visual Models 64
7.7 OpenVidia . 65
7.8 MinGPU . 65
7.9 Other Research Projects 65

7.9.1 Speedups . 65
7.9.2 CUDA Courses . 65

8 Conclusion 67
8.1 Thread-Level Parallelism (TLP) vs. Data Parallelism 67
8.2 Future Directions . 68
8.3 High-Performance Computing . 68
8.4 The New Normal in High-Performance Computing 69
8.5 For Arti¯cial Intelligence . 69
8.6 Maturity . 7 0
8.7 Jumping on the Bandwagon . 70

A Publications 83
A.1 Publications in Dutch ICT Media . 83

CONTENTS 5

B Further Reading 84
B.1 Multi-Core Programming . 84
B.2 GPGPU Programming . 85
B.3 Cell Programming . 86
B.4 Functional Programming . 86

Glossary 115

List of Tables

2.1 x86 ISA extensions [19]. 29

6

List of Figures

2.1 Intel's 45 nm processors are based on transistors with Hafnium-based high-k metal gate silicon technology
2.2 Intel's ¯rst high-volume 45 nm chip factory in Chandler, Ar izona, required a $3 billion investment, measures
2.3 Architectures of the systems in the Top500 systems ranking. [Top500, November 2009] 21
2.4 Processor families of the systems in the Top500 systems ranking. [Top500, November 2009] 21
2.5 All the major system elements of the APU | x86 cores, vector (SIMD) engines, and a Uni¯ed Video Deco
2.6 Intel's 80-core Tera°ops Research Processor. [Intel] 30

3.1 nVidia Fermi roadmap: number of cores [11]. [nVidia] 37
3.2 Peter Hofstee, the Chief Architect for the Cell processing cores at IBM: \The main design goal for the
3.3 If you look at the °oor plan of a modern microprocessor, youwill have trouble ¯nding the adders and the

4.1 LOFAR consists of seven thousand separate antennas. Together they form ¯ve spiral-like arms. [LOFAR]
4.2 Rob van Nieuwpoort, researcher at ASTRON: \Theoretically, only ten ATI 5970 cards would be required
4.3 Performance of the LOFAR correlator algorithm on various platforms, including percentages of the theoretical

6.1 The Ct API in the software development process. [Intel] 55

7.1 Computing power (in GFLOPS) and memory bandwidth (in GB/ s) for various nVidia GPUs, with the
7.2 AccelerEyes Jacket product family. [AccelerEyes] 62
7.3 This supercomputer was built as part of a collaboration between the Cox Lab (Rowland Institute at Harv
7.4 Performance and cost of various CPU and GPU implementations for a key ¯ltering operation in a biologically

7

Preface

This thesis report is part of the program for my Master's degree in Psychology. It elaborates
on current developments in hardware and its consequential opportunities for every research
¯eld using High-Performance Computing (HPC) in general, and Arti¯cial Intelligence (AI) in
particular.

I would like to thank Frank van der Velde (Leiden University) for supervising this work and
his patience, and Marc de Kamps (Leeds University) for taking the role of second supervisor.

Aad O®erman, Leiden, July 2010.

8

Chapter 1

Introduction

1.1 Many-Core Processors

Over the last years, there has been a fundamental change in the way manufacturers of general-
purpose processors have been improving the performance of their products. Next to important
developments in architecture and chip manufacturing technologies, increasing the clock speed
has been the traditional way to improve performance.

After testing the water with hyper-threading and dual-core technologies, processor man-
ufacturers now have irrefutably entered the multi-core era. Three years ago, both Intel and
AMD introduced their ¯rst quad-core products. Last summer, AM D launched the ¯rst six-
core processors, followed by Intel in March 2010 [105]. Before the end of the same month,
AMD retook the lead with the introduction of their Magny-Cour s processors [2], each contain-
ing eight or twelve cores. Furthermore, both companies haveannounced roadmaps featuring
processors with eight or sixteen cores, respectively. On the long term, general-purpose pro-
cessors will consist of tens, hundreds [100], or even thousands of cores [].

1.2 General-Purpose Computing on Graphics Processing Units

At the same time, graphics processors, currently being seperate chips on motherboards or spe-
cialized graphics cards, are increasingly being utilized by application programmers. For spe-
ci¯c problems they have found mappings onto these graphics engines that result in speedups
by two orders of magnitude. Manufacturers of graphics processors have recognized this op-
portunity and are increasingly making their products accessible to others than graphics pro-
grammers.

1.3 Heterogenous Multi-Core Processors

In the near future, increasing densities will allow graphics processors to be integrated onto
the main processor chip. Integrating accelerators for other functions as well, will eventually
result in heterogenous multi-core processors providing massive amounts of parallel computing
power. Then, applications currently being deployed on expensive parallel systems, can be run
on Common-Of-The-Shelf hardware (COTS, i.e. x86 systems).

9

CHAPTER 1. INTRODUCTION 10

1.4 Opportunities for Arti¯cial Intelligence

Although these developments in hardware bring along huge advantages for every research ¯eld
using High-Performance Computing (HPC) in general, it is of particular interest for research
in Arti¯cal Intelligence (AI).

For algorithms in AI, more and more mimicing their biological originals, are massively
parallel by nature. This goes for all types of neural networks we simulate on computers,
but also for visual systems and all sorts of object recognition, feature extraction and other
processing that takes place on visual data. Especially the latter promises to take big advantage
of developments in graphics processors. For graphics processors were designed to work on
visual data from the beginning.

Another ¯eld that can be expected to pro¯t from these developments are robotics. The
ability to operate autonomously and independently requires intelligence, compactness and
mobility. This relates directly to higher densities (both on silicon and system level), higher
performance, and lower power consumption, all driving current developments in hardware.

1.5 Research Questions

Questions we will pursuit to answer in this report:

² where are general-purpose processors (CPUs) heading?

² what is driving these developments?

² what are graphics processors (GPUs) bringing to HPC users?

² how do GPU manufacturers facilitate this new market?

² how mature are these solutions in general?

² more speci¯cally, what programming models are available?

² and what programming languages?

² how do CPUs and GPUs compare?

² how are GPUs being deployed in AI-related research?

² what speedups are being found?

² what about power consumption and size?

² what about prize?

² do these developments in hardware provide new functionality?

² what hardware to deploy and what choices to make at this moment?

CHAPTER 1. INTRODUCTION 11

1.6 Contents

The ¯rst part of this report elaborates on current hardware developments in generic terms.
Further on, we will concentrate on applications and projects in AI.

In chapter 2, we present an overview of current developmentsin general-purpose processor
technology (Central Processing Units, CPUs). In chapter 3,we look at Graphics Processing
Units (GPUs). And in chapter 4, we elaborate on the implementation and performance
issues of these new hardware technologies. In chapters 5 and6, we discuss some parallel
developments in programming models and languages.

Up till here, all chapters describe broad developments in computer and processor research
and technologies, valid for HPC and HPTC (High-Performance Technical Computing) in
general. In chapter 7, we stage some GPGPU applications and projects (General-Purpose
Computing on GPU) speci¯cally related to AI.

Finally, in chapter 8, we present our conclusions.

Chapter 2

Multi-Core CPUs

2.1 Introduction

Figure 2.1: Intel's 45 nm pro-
cessors are based on transis-
tors with Hafnium-based high-
k metal gate silicon technology,
the biggest change to how tran-
sistors are made in 40 years. [In-
tel]

As processor performance becomes more and more available
in the form of parallelism, software developers need new
tools to exploit this new hardware.

For end users still cherish the idea that performance
becomes better as the clock speed increases. And no wonder
after both Intel and AMD have ¯ercely battled each other
for ¯fteen years with clock speed as their most important
weapon. It was marketing grounds in the ¯rst place that
made manufacturers focus on clock speed for so long.

However, a rather considerable part of today's processor
performance is not the result of the higher clocks but due
to the ever increasing number of transistors that ¯ts on a
chip. For fourty years now, Moore's Law (see section 2.1.1)
succesfully predicts an exponential growth: the number of
transistors on a die doubles every two years.

Subsequently, this larger amount of transistors is trans-
lated by the architects into technical features that should
increase the processor's performance. These can be rel-
atively straight-forward improvements, like larger cache
sizes, but also very complex technologies, e.g. Instruction-
Level Parallelism (ILP, like pipeling and scoreboarding in
a superscalar design), more speculative execution, and in-
struction set extensions (like SSE, Streaming SIMD Extensions).

Such being the case, it is important to note that it would have been very hard to reach
the high clock speeds at all without the larger caches and thecascaded cache architectures
(typically, up to three levels in modern processors). Today, two thirds of the surface area,
sometimes even more, is taken by the caches (see ¯gure 3.3) [48]. Without these, the processor
would stall even more, waiting for the relatively slow memory, consequently e®ectively doing
nothing.

12

CHAPTER 2. MULTI-CORE CPUS 13

2.1.1 Moore's Law [sidebar]

Moore's Law states that the number of transistors on a silicon die doubles every two years.
It was formulated by Gordon Moore, co-founder of Intel, in 1965 (originally predicting a
doubling every one-and-a-half year) and has held up for over fourty years now.

2.1.2 Multiple Cores

Just like the examples mentioned above, placing multiple cores on a single die is another way
to translate extra transistors into performance. However, software developers now have to
explicitly exploit the available performance (in the form of Thread-Level Parallelism, TLP).
The larger cache sizes, more ILP, more speculative execution, and ISA extensions, had only
consequences for the compiler back-end, at worst.

Looking at a straightforward single-threaded program running on a multi-core processor,
speed improvements will be limited to what already can be achieved on a two-way or four-way
SMP system (Symmetric Multi-Processing). At best, the program has a processor (core) fully
at its disposal, so it can be executed without being disturbed by other programs.

The most important question will be whether the current programs can be adapted to
suit parallel processing, to exploit the new multi-core and future many-core processors.

2.2 Dead-End Street

Until recently, next to enhancements in architecture and chip manufacturing technologies,
increasing the clock speed has been the most e®ective way to improve performance.

Five years ago, semiconductor manufacturers were still dreaming of processor speeds reach-
ing the 10 GHz milestone []. New records were broken every month. And every year, computer
users could buy from a new processor generation that invariably was tens of percents faster
than its predecessor, while prices remained virtually the same.

This ever increasing performance did not stimulate software developers to write e±cient
code. For it was less expensive to deploy more hardware than to spend a lot of time and money
optimizing their algorithms. And even if the performance of today's a®ordable hardware was
not su±cient, it was simply a matter of time before new systemswould catch up. The Java
programming language is the best example. It was su®ering from bad performance at its
introduction in 1995. Today, it is the most used programming language of all [?].

However, as clock speeds increased and increased, it becameclear that this strategy could
not be maintained in the long run.

The fastest x86 processor ever available for the desktop market was the Pentium 4 Prescott
F/500/600 series, running at 3.8 GHz [18]. As opposed to the latest generations of Intel's
Core 2 and i7 and AMD's Phenom processors, that are clocked almost a full GigaHerz lower.

Several causes can be pointed out for this yet unexpected decrease in clock speeds.
First, while shrinking the features, chips become more ine±cient. Static dissipation (when

the circuits are not switching) is already contributing massively to modern chips' power
usage. That is increased even more by the higher leakage of the smaller transistors and their
interconnects.

Despite the problems manufacturers had ¯tting their new processors in the power en-
velopes of existing computer systems, they did so for as longas they could. The reason was

CHAPTER 2. MULTI-CORE CPUS 14

marketing: processors with a higher clock were easy to sell.The market perception was: the
higher the clock, the faster the processor.

Ironically, as the clock speeds increases, the e®ective speedup in software decreases with
every next step.

Second, even though smaller manufacturing details allow for lower voltages, higher clock
speeds would require these voltages to be raised again. Manufacturers now hope to avoid
the quadratic increase in both static and dynamic dissipation that necessarily comes with a
higher clock speed.

2.3 Performance per Watt [sidebar]

According to a model used by Intel [90], with every new silicon process generation, the
features on the die shrink with 30 percent. As a result, the area to hold a certain number of
transistors is reduced by half (0:72 = 0 :5). Or, the number of transistors on a certain area
is doubled. At the same time, the capacitance of each transistor decreases by 30 percent,
the maximum voltage decreases by 10 percent, and the maximumswitching frequency of a
transistor increases by 30 percent.

So, moving to the next process generation, power dissipation per die area scales with the
number of transistors times capacitance per transistor times voltage square times frequency:

2 ¤ 0:7 ¤ 0:92 ¤ 1=0:7 = 1:6

In other words, every generation improves density by 50 percent (area per transistor),
while dissipation (power per transistor) only improves by 20 percent. That means that power
consumption is the ultimate limiter to improving computati onal performance in silicon tech-
nology. For the heat dissipation per area will only increaseas we move to ever smaller
manufacturing process features.

So, when increasing the number of cores (active transistors) on a die, focus should be on
performance per power (MIPS/Watt, Million Instructions Pe r Second per Watt) instead of
performance per clock, the latest typically being a design parameter of the ILP era. Despite
all the green marketing of the processor manufacturers, nowadays, performance per Watt
being the new design goal is a physical and technical necessity rather than an environmental
consideration.

Consequently, on an architectural level, manufacturers will increase the number of transis-
tors contributing to performance. Processor designs will consist of as many computing units
as possible, with the least possible administrative overhead, moving complexity further and
further to the compiler back-end and the programmer.

The fact that Intel is moving to a JIT compiler (Just-In-Time) f or Ct [88], results in a
decreasing dependency on native code and speci¯c instruction sets . The resulting code will
be less depending on the underlying machine. In the longer term, that could even refuel
the classic RISC (Reduced Instruction Set Computer) versusCISC (Complex Instruction
Set Computer) debate, an area where the architecturally crippled x86 architecture is on the
winning hand, at least in terms of market penetration.

CHAPTER 2. MULTI-CORE CPUS 15

2.4 Sustainability and Power Consumption

Apart from these technological objections against higher clocks and power dissipations, energy
demanding processors also no longer ¯t today's product portfolios. In these days of awareness
on sustainability and power consumption, triggered by scarce resources and higher energy
prices (now temporarely interrupted by the ¯nancial crisis) , manufacturers are changing the
way they optimize their products. While performance-per-price used to be the most important
design parameter, nowadays it is performance-per-Watt.

For example, when Intel introduced its ¯rst 45 nm chips two years ago, their marketing
message was dominated by the better performance at the same power usage and the lead-
free manufacturing and packaging process [82, 91]. And whenIBM introduced its Power 6
processors three years ago, their marketing campaign was built around the message that it
doubled the performance at the same power usage [52].

2.5 System and Datacenter Design

Another problem is the e®ort system designers have to go through to ¯t these high-power
components into their systems. Especially in modern form factors like the 1U units (`pizza
boxes') and blade systems, the heat being generated puts up major design problems [?].

Furthermore, the racks in most existing datacenters can noteven support these high-
density systems. According to AMD, this causes twenty percent of the slots in all datacenters
to be left unused [?].

Typically, even a modern standard PC can not be placed near the user's desktop without
the noise (caused by the cooling fans) driving him crazy. Newcomputing paradigms where
execution power is no longer locally but centrally organized, e.g. thin clients in combination
with virtualized desktops or blade PCs, or SaaS (Software-as-a-Service), should provide relief
for desktop users.

2.6 Chip Design and Manufacturing

Finally, there are the investments manufacturers have to make for each next processor gen-
eration. Next to the physical and technical limitations designers are continously trying to
overcome, these days economical limitations have become atleast as important. Designing
and manufacturing modern processors is incredibly expensive.

Just to give an idea: designing an architecture for a next generation of processors costs
many hundreds of millions of dollars. To develop the next node in chip manufacturing tech-
nology requires several billions. And to set up full production requires an amount of money
in the order of magnitude of ten billion dollars. For example, Intel's new 45nm fab in Arizona
required an investment of three billion dollars [91]. Last year, another two manufacturing
plants were added [].

Realizing that Intel develops a new processor generation and shrinks its manufacturing
technology every two years (tick-tock model [108]), gives anidea of the huge investments
processor manufacturers have to make.

Ever increasing clock speeds have a huge impact on these design and manufacturing costs.
If a manufacturer can keep the GigaHertzes within limits, he can both save a huge amount
of money and accelerate his development process.

CHAPTER 2. MULTI-CORE CPUS 16

2.6.1 Rock's Law [sidebar]

Figure 2.2: Intel's ¯rst high-volume 45 nm
chip factory in Chandler, Arizona, required
a $3 billion investment, measures 1 mil-
lion square feet, with 184,000 square feet
of clean room space. [Intel]

Rock's Law states that the cost of a semiconduc-
tor chip manufacturing plant doubles every four
years. Currently, a fab already requires an in-
vestment of several billions of dollars. We are
reaching the point where economical limitations
are a more important factor than technological
limitations for Moore's Law to stay valid.

2.7 ILP Complexity

Other factors driving costs are the complexity
involved with ILP and its deminishing speedups.
I.e. due to instruction and data interdependen-
cies, pipelines can only be so deep. Furthermore,
highly pipelined and parallelized superscalar ar-
chitectures require complex scoreboarding and
shortcuts to still be e®ective.

VLIW architectures (Very Long Instruction
Word) remove this complexity from the proces-
sor hardware by having the dependency checks
being performed by the compiler back-end. For
example, the limiting conditions of the Instruction Set Arc hitecture (ISA) of Intel's Itanium
processor architecture (EPIC, Explicitly Parallel Instru ction Computing) show how complex
these interdependencies are. As we shall see further on, multi-core is another step in this shift
of complexity from hardware to software, this time not to the compiler back-end, but even
further, to the software developer. More and more often, he will be writing his code using
Thread-Level Parallelism (TLP), parallel datastructures and parallel algorithms.

2.8 Hardware Redundancy

The development of many-core architectures is related to this trend away from large and
complex, monolithic processor cores. Furthermore, parallel architectures containing several
of even a lot of similar units can be used to increase the yieldof the manufacturing process,
another very important cost factor.

For example, one type of defects is caused by particle contamination of the silicon wafer
surface in the processing. The number of these defects is linearly related to the die surface.

The large die and small features of the modern processor | forexample, the Intel Core i7
sports 731 million transistors on a 263mm2 die [168] | make it more vulnerable to defects
caused by particle contamination. Manufacturers can dramatically increase the yield of their
processes by using the large number of transistors to implement parallel units for redundancy.

For example, IBM's Cell processor (originally designed forSony's PlayStation 3 game
console, but also increasingly used for GPGPU (General-Purpose Computing on GPU) en
HPC (High-Performance Computing) applications, see section 3.8) contains eight computing
cores (SPEs, Synergistic Processing Elements) from which only seven are visible to the pro-

CHAPTER 2. MULTI-CORE CPUS 17

grammer. The spare unit allows the manufacturer to internally reroute the architecture to
compensate for a defect unit, by cutting fuses on the die or onthe package at the end of the
production process.

Intel and AMD have been using similar techniques for years. For example, the Intel Core 2
Duo E7000 series processor is actually a part from the Wolfdale E8000 series from which half
of the cache has been disabled [17]. As ¯gure 3.3 shows, large caches take the bulk of the die
surface. Similarly, the Intel Core Solo T1000 series processor is in fact a dual-core processor
from which one core has completely been disabled. However, even though the Phenom X3
triple-core product line allows AMD to save their crippled quad-cores from the dust bin, the
hard part is to get these odd multi-cores accepted by the market.

2.9 Workloads

Although limiting the clock speeds brings huge advantages for the manufacturers themselves,
of course the lower clocked processors still have to be sold,and thus have to bring additional
value (performance!) to the end users. And it is the application programmer who will have
to actually deliver this value.

Looking at the market, several user groups with speci¯c workloads can be identi¯ed:

² desktop/workstation:

{ general-purpose, i.e. o±ce productivity,

{ workstation, i.e. engineering, scienti¯c

{ software development, i.e. programming,

{ gaming,

{ multimedia / home entertainment systems;

² server:

{ horizontally scalable,

{ vertically scalable,

{ HPC (High-Performance Computing),

{ consolidated, i.e. virtualized.

2.9.1 General-Purpose Desktops

The general-purpose desktop system is mainly used for o±ce productivity applications. Since
most of this software is I/O intensive, opportunities to tra nsform the code to multi-threaded
algorithms are limited. More important, there is currently no need for more performance.
The utilization of the thick client generally lies below ¯ve p ercent [].

Parallelism on these systems takes place on process level. While your word processor
waits for the next keystroke, your mail client, your web browser and your RSS feed reader
all get their share of processor cycles. And in the background, the ¯rewall, the virus scanner
and other administrative processes are running `at the sametime'. Alternating between these
tasks is performed by the scheduler of the operating system,by swapping executables. For
example, while the user is editing a document, the virus scanner, the mail client and several

CHAPTER 2. MULTI-CORE CPUS 18

administrative tasks are running in the background as well. While the word processor is
waiting for the next keystroke, the scheduler assigns processing cycles to the other executable
processes.

After storage has been centralized over the last years, we now see the processing power
slowly moving away from the desktop to the datacenter as well. In the long run, the front-end
will be replaced by thin clients and mobile devices. The back-end will run in the datacenter,
either on a virtualized desktop, on a blade PC, on a shared application server (Server-Based
Computing, SBC), or in the cloud of an Application Server Provider (ASP; SaaS, Software-
as-a-Service).

Since there are no data or applications on the client system,and management has been
centralized, con¯gurations like these are more e±cient and more secure. For nothing is lost
when the client is lost or stolen. Even the current session issecurely managed by the ap-
plication gateway responsible for access control. In this case more e±ency is gained from
parallelism on application and virtual machine level.

2.9.2 Workstations

Loads traditionally run on a workstation will de¯nitely take advantage of the new multi-
processors. Most engineering and scienti¯c algorithms contain a lot of native parallelism,
easily to be exploited on a thread and datastructure level. Since workstations often contain
two or four processors, parallelism within these algorithms has already been identi¯ed and
implemented. As the number of cores continues to grow, ISVs (Independent Software Vendors)
in this market will be able to map their algorithms onto the new many-core architectures and
speedup their applications signi¯cantly.

Using remote desktop protocols like HP's RGS (Remote Graphics Software), Red Hat's
Spice protocol (part of the KVM virtualization technology, Kernel-Based Virtual Machine), or
the PC-over-IP protocol recently introduced by VMware, even graphics-intensive applications
can be moved to the datacenter. However, unlike desktop systems, workstations will not be
virtualized. HP and IBM are selling blade PCs and blade workstations that are placed in the
datacenter but still allow users to have a dedicated, non-shared system with a guaranteed
performance. Here, more e±ency is gained by letting users choose a virtual PC or a blade
workstation when starting a new session, depending on the task they have at hand (compare
time-sharing).

2.9.3 Developers

Programmers developing general-purpose and business applications speci¯cally have a need
voor parallelism on a virtual machine level. While writing t heir code, they continously have
to test their software. VMware (now part of EMC), currently k nown for the virtualization of
Windows servers, started in 1998 by providing software testing environments to programmers.

As these environments typically run only a limited number of virtual machines at the
same time, i.e. when developing distributed and multi-tier applications, there currently is no
direct need for more performance in this world.

However, since software developers will be the ones who haveto exploit the parallel per-
formance of the new many-cores, they will be needing these high-end systems all the same,
simply to be able and to be stimulated to write highly parallelized code.

CHAPTER 2. MULTI-CORE CPUS 19

2.9.4 Gaming

Without any doubt, gamers are the most demanding users in thePC market. These people
can easily spend a multitude of the amount of money the average PC owner is willing to spend
on his desktop or laptop system. Their needs are straightforward: as much processor power,
as much memory, and as much graphical power as they can a®ord. In terms of performance,
this translates to more real-time rendered graphics and moreimage frames per second.

However, currently, the most e®ective way to increase the performance of a gaming system
is not to add more processor power or memory, but to add more graphical power. The latest
technological development in this area is to combine the power of several graphics adapters.
(nVidia SLI, Scalable Link Interface; AMD/ATI CrossFire).

This focus on the graphics engine is one of the reasons game developers were slow to
adopt the new multi-core processors. According to a test by Inpai [81], most of today's games
fully exploit two processor cores. And some are able to utilize three cores. However, despite
the push by processor manufacturers [3], most of the times, afourth core currently does not
improve performance.

2.9.5 I/O and Network Intensive Applications

Network-intensive software like web servers, messaging servers, and application servers can
easily be deployed on SMP systems and clusters. Most of theseapplications already are multi-
threaded or multi-process. The best example is the Apache HTTP server. It supports several
multi-threading models [9], depending on application and platform. Server software like this
is called horizontally scalable, meaning that capacity caneasily be extended by adding extra
server systems.

These scale-out applications are typically found at the front-end of a multi-tier infrastruc-
ture, where a layered architecture is built from front-end servers taking care of presentation
and interaction with the clients, application servers containing the business logic, and database
and transaction servers in the back-o±ce.

Just like general-purpose desktop systems, servers hostinghorizontally scalable software
will run out of I/O capacity before using up all raw processor performance and memory. Thus,
adding more cores to the processor will not increase the performance of these applications.

The biggest advantage of a scale-out infrastructure is that it can be built using cheap,
Common-O®-The-Shelf (COTS), standard systems. Of course, thispossibility is a direct
consequence of the server processes or threads being mutually independent for each client.

2.9.6 Vertically Scalable Applications

In contrast to horizontally scalable software, vertically scalable applications are bound by
processor performance and memory capacity rather than I/O throughput. Transactions here
require massive calculations on large amounts of data beingperformed sequentially. Typi-
cal examples of applications in this area are databases, ERPsystems (Enterprise Resource
Planning) and BI systems (Business Intelligence).

Scale-up applications are typically transaction-oriented, requiring a lot of processor and
memory resources to deliver their response as fast as possible. More ILP is the best way
to increase performance, followed by data parallelism and TLP. Multi-core processors can
e®ectively be deployed to increase performance, but vertically scalable applications will need

CHAPTER 2. MULTI-CORE CPUS 20

to be rewritten to exploit these. However, possibilities for parallelization of these applications
are limited by sequential dependencies, and communicationcosts between partitions.

The best example of a transaction-oriented product transformed into a more scalable
application is the Oracle database. Nowadays, Oracle promotes its RAC technology (Real
Application Clusters), running on separate server systems, as the platform of choice.

According to Gartner[?], in the future all vertically scalable applications will b e trans-
formed in a similar way. Furthermore, current monolitic hig h-end servers like those built
by Bull Fujitsu Siemens, Hitachi, HP, IBM, SGI, Sun (now part of Oracle), and Unisys,
will increasingly be composed from separate building blocks. For example, true to their `We
blade everything' strategy, HP will eventually replace their Superdome systems by discrete
blade-systems bound together with high-speed interconnects.

This way, vertically scalable software as well as hardware will shift towards the middle
of the horizontal/vertical scalability axis. Although mul ti-core processors will be able to
facilitate this transmission, whether that will also be tru e for many-cores remains to be seen.
So, high-end systems deploying high-end processors like the IBM Power, the Intel Itanium
and the Sun UltraSPARC will be around for the forseeable future.

This divergence was explicitly re°ected in the roadmaps of the SPARC processors. In
2005, Sun (now part of Oracle) split the UltraSPARC products in two separate lines. The
UltraSPARC T series (code name Niagara) consist of multi-threaded multi-core CPUs op-
timized for application servers, web servers, messaging servers and other front-end servers,
typically Sun's classic business. The Rock processors (¯rstsilicon in 2007, development sup-
posedly canceled in 2009) were aimed at vertically scalableworkloads like database servers,
ERP systems and other back-end applications.

In contrast to Sun's diverging SPARC roadmaps, Intel is bringing its general-purpose
server processor line (Xeon) and its high-end Itanium processor line closer together. Most
notable is the transition of both processors to the QPI bus (QuickPath Interconnect) in 2008,
to replace the traditional Front-Side Bus (FSB).

2.9.7 High-Perfomance Computing (HPC)

HPC and HPTC software (High-Performance (Technical) Computing) is traditionally highly
parallized. Typical applications are scienti¯c, engineering and ¯nancial calculations, visual-
ization, and simulation. These workloads generally take advantage of all forms of parallelism,
be it ILP, TLP, or cluster-level parallelism.

This appetite for parallelism is best illustrated by the easy and rapid shift from specialized
high-end hardware to x86 clusters as soon as these became available cheaply. It caused the
perish of SGI, ten years ago still the market leader in HPC. For example, animated movie
producers like DreamWorks and Pixar (part of Walt Disney) now built huge rendering farms
based on PC systems to produce their computer animations. Well-known ¯lms in this genre
include A Bug's Life, Finding Nemo, Shrek, and Toy Story.

Another example is the Top 500 of the fastest computer systems in the world [158]. For
years now, it is dominated by clusters based on Xeon and Opteron processors. As ¯gure 2.3
shows, the November 2009 ranking consists of 83 percent of clusters. Figure 2.4 completes
this picture, showing that 79 percent of all systems features processors from the Intel EM64T
family and 8 percent of all systems is based on the AMD x86 64 family.

Obviously, the many-core trend will have a huge impact on HPC and HPTC. Since ap-
plications in this world are already highly multi-threaded, each new generation of many-core

CHAPTER 2. MULTI-CORE CPUS 21

processors will result in another hefty speedup.

Figure 2.3: Architectures of the systems in the Top500 systems ranking. [Top500, November
2009]

Figure 2.4: Processor families of the systems in the Top500 systems ranking. [Top500, Novem-
ber 2009]

2.9.8 Consolidated Workloads

Virtualization is rapidly becoming a standard feature on x86 server systems [38]. Most often it
is used to consolidate Windows servers. Since the operatingsystem was not reliable enough to
be deployed in the back-o±ce, it has become best practice to runonly a single application on
a Windows server, resulting in datacenters ¯lled with heavily underused hardware. According
to ... [], the typical load on an x86 server system lies below ten percent. That allows a company
like HP to typically host ten to thirty virtual machines on on e of their blade servers [24].

CHAPTER 2. MULTI-CORE CPUS 22

According to Gartner [38], 16 percent of workloads are running in virtual machines today.
This will rise to around 50 percent of x86 architecture server workloads by the end of 2012.
The fastest growing market for virtual machines is the small business sector. \While large
enterprises were quick to leverage virtual machines to reduce server sprawl and power costs,
as well as conserve data center space, small business started late on virtualization," said Tom
Bittman, vice president and distinguished analyst at Gartner. \However, by year-end 2010,
enterprises with 100-999 employees will have a higher penetration of virtual machines deployed
than the Global 500. For years the entry point was simply too high for small enterprises, but
increased competition by server vendors has enable smaller¯rms to embrace virtualization."

As described in section 2.4, higher energy costs, the need for a smaller footprint (in
power, cooling and rackspace), and environmental considerations cause datacenter managers
to reevaluate their infrastructure. VMware's virtualizat ion stack allows system managers to
run several virtual machines on a single physical server system. Furthermore, management
tools like VMotion provide extra °exibility and reliability by (automatically) moving around
and replicating virtual machines.

Since all these workloads are independent of each other, virtualization can naturally utilize
the extra performance of many-core processors. For this technology multiplies the number of
processes that can be run on a single system, without any changes to the operating systems
or the applications at all.

After Microsoft released their hypervisor Hyper-V for free in 2008 [128], competitor and
partner Citrix and market leader VMware made their hypervisors freely available too [165].
Nowadays, server systems from Dell [30], HP [49] and IBM optionally come with an embedded
hypervisor from VMware (ESXi) [161, 162, 164, 163], Citrix (XenServer) [22, 23, 20, 21] or
Microsoft (Hyper-V Server 2008 OPK; OEM Preinstallation Kit) [129]. Since all vendors are
conforming to the Open Virtualization Format (OVF), virtua l machines (that can be stopped,
moved and restarted) can be run on all popular x86 virtualization platforms [31].

Over the next years, virtualization will become a standard feature on every x86 server
system [38]. And even when not running consolidated workloads, the virtualization layer will
still be deployed to provide °exibility, by abstracting the a pplication and operating system
software from the underlaying hardware.

The rise of blade systems, as o®ered by HP, IBM and (lately) Cisco, is another exam-
ple of the commoditization of the x86 substrate. The next step will be cloud computing,
standardizing x86 processor cycles and storage.

2.9.9 Virtualization Issues

Although virtualized workloads are completely independent of each other, virtualization is
actually a very ine±cient technology to consolidate applications. For each virtual machine
comes with its own, full copy of the operating system. This way, the most important bene¯ts
of the operating system, the sharing of resources like software components (shared libraries),
hardware resources, and internal kernel functions, datastructures and optimizations, are lost.

More important, all these operating systems running in parallel on the same physical server
system generate tremendous pressure on the already overloaded memory interface. VMware
tries to lighten this burden by incorporating technologies like (Content-Based) Transparent
Page Sharing (TPS) and Memory Ballooning into their hypervisor [166].

The former aims to map logical pages having the same content from various virtual ma-
chines onto a single physical page. Only after a memory page is changed, a new (adjusted)

CHAPTER 2. MULTI-CORE CPUS 23

copy is created in memory (copy-on-write). Creating hash codes from memory pages and com-
paring these with each other in the background, TPS remains adumb brute force strategy.
Yet, it is completely transparent to the virtual machines.

To keep all processor cores of a virtualized server system busy, enough virtual machines
should be loaded into memory (Memory Overcommit), resulting in large parts of the virtual
machines being swapped out. There are technologies available where the hypervisor is re-
sponsible for the swapping of memory pages, but this is generally not the best solution. For it
creates a second layer of swapping underneath the various operating systems. Furthermore,
the hypervisor has poor sight on which pages should be swapped out to disk.

Memory Ballooning allows the hypervisor to reclaim memory pages from virtual machines
through a special driver in the guest operating system. It forces the operating system to swap
out pages. When large parts of a virtual machine are not beingused, the number of pages
in physical memory shrinks under pressure of the hypervisor. These are swapped back in
after the virtual machine comes back to live. This way the paging functionality of the guest
operating system is being used by hypervisor.

An important disadvantage of Memory Ballooning is that with in the guest operating
system the ballooning driver can be tempered with, possiblyresulting in performance issues
for the other virtual machines. If ballooning no longer results in the freeing of memory pages,
the hypervisor falls back to its own paging function.

A more fundamental disadvantage of ballooning is that this technology breaks the strict
barrier between hypervisor and host operating system on theone hand and guest operating
system on the other. Virtualization was never invented to optimize computing resources.
It was introduced on the mainframe to test new versions of theoperating system. Most
of us seem to have forgotten now that VMware stems from the same tradition. Their ¯rst
product was aimed at software developers to facilitate the setup of their test environment.
So, current virtualization technologies might very well be an intermediate step on the way to
a better compartmentation of the various applications running on the same operating system.
For, despite Windows' limitations, the creation of a secureexecution environment for each
application, the provisioning of tools to manage it, and the sharing of resources still are the
most important functions of an operating system.

When it comes to the compartmentation of applications, the use of containers might be a
better solution than virtualization. The Containers in Sun Solaris, OpenVZ for Linux, and the
Virtuozzo Containers of Parallels build on the resources already available in the underlying
host operating system, maintaining only the parts that are di®erent for each container. So,
while o®ering a full operating system to the applications above, the parts underneath it are
shared.

Of course, this way, guest operating systems are limited to the same platform as the host
operating system. Sun supports other guest operating systems as well, using Branded Zones
(BrandZ). Next to Solaris itself, Linux is supported as well.

2.10 Blades and Clusters [sidebar]

Independent workloads or processes that do not require a lotof interaction while running,
can be executed on a cluster of separate systems.

Clusters traditionally being a server farm of separate computing nodes, nowadays HP and
IBM both o®er a full portfolio of blade computer systems. These modern rack-based systems

CHAPTER 2. MULTI-CORE CPUS 24

consist of managed 19 inch chassis (enclosures) that each can typically contain ten to ¯fteen
blade servers.

The blades are basic to high-end servers speci¯cally designed[] to ¯t the (proprietary)
high-density form factor of the blade chassis. Power supply and cooling are shared, just like
I/O (i.e. storage) and the network connections (through a passive, high-bandwidth midplane).

Blades are typically used in the back-o±ce, often providing a virtualized infrastructure
for consolidated x86 server workloads. That is why high-end blades usually can handle more
memory and (shared) network interfaces than ordinary server systems.

2.10.1 COTS Clusters

However, blades are currently too expensive to be deployed for high-volume front-end applica-
tions that do not require their platform management capabilities, scalability and robustness.
That is why a company like Google has built their infrastructure on top of standard x86
mainboards.

Most important advantage of an infrastructure like this, is that the COTS hardware
matches the low-value, high-volume tra±c of these front-ends. Furthermore, since each com-
puting node in this setup has its own memory and network connection, an infrastructure like
this, while running millions of independent, network-intensive processes of a web front-end,
does not have the memory and I/O problems of virtualized workloads on a blade infrastructure
(see section 2.9.9).

\Clustering is actually the easiest way to scale memory and I/O bandwidth with comput-
ing bandwidth," says Herbert Cornelius [25], director of Intel's Parallel Application Center.
\One of the outcomes of our research might be that a many-core architecture may be much
closer to a cluster topology than to a shared memory machine.That is one of the things we
are trying to understand: which topology of the many-core is suited for what type of work-
loads. But there de¯nately are certain workloads that you would want to run on a shared
memory machine. Because when all threads are operating on the same data, you do not want
to replicate it; then you want to keep your data in a single space."

\Depending on the workload, one or the other architecture has some bene¯ts. Maybe the
truth is somewhere in the middle. However, that is somethingwe do not know yet. It is
something for ongoing research, when we enter that stage where we might be able to put a
couple of hundred cores on the chip."

2.11 Amdahl's Law [sidebar]

Amdahl's Law gives a theoretical maximum for the speedup of an application that can be
reached using parallelization. Basically, Amdahl states that the speedup of an algorithm is
limited by the sequential parts that can not be parallelized:

speedup =
1

(1 ¡ p) + p
s

where p is the fraction of the algorithm (measured in execution time) that can be parallelized,
and s is the fraction that cannot be parallelized and needs tobe executed in sequence.

For example, if two-thirds of an algorithm (measured in execution time) can be run on
a highly parallel machine, there is still the other third fra ction of code that can be executed

CHAPTER 2. MULTI-CORE CPUS 25

only in serial mode (typically because of interdependencies between parts of the code). Even
if the ¯rst two-thirds of the code could be fully parallelized t o the theoretical maximum of
zero execution time, there is always the last third that determines the total execution time.
In this case, the maximum speedup would be three.

So, apart from practical limitations in systems hardware, there is also a theoretical limit
in speedup, depending on the fraction of the algorithm that can not be executed in parallel.
Algorithms for which no parallel implementation exists, are called inherently serial problems.
Algorithms from which a large fraction can easily be parallelized, are called embarrassingly
parallel.

Note that Amdahl's Law gives a theoretical maximum. The parallelization of algorithms
is also limited by the Law of Diminishing Returns, making it h arder (i.e. more expensive) to
parallelize an algorithm after most of it has already been parallelized. Furthermore, increasing
communication costs limit the segmentation of an algorithm into increasingly smaller parts.

2.12 Gustafson's Law [sidebar]

Contrary to Amdahl's Law, Gustafson's Law states that any problem can e®ectively be par-
allelized as long as the workload is large enough, i.e. increasing the fraction of parallel code
while the serial fraction remains the same. So, where Amdahl's Law speci¯es the execution
time for a given workload, Gustafson's Law considers the amount of work that can be done
in a certain span of time.

2.13 Karp-Flatt Metric [sidebar]

While Amdahl's Law and Gustafson's Law give theoretical maximum values for parallelized
algorithms, the Karp-Flatt metric gives a practical value of a parallelized algorithm running
on a speci¯c parallel con¯guration. It measures the e±ciency of the parallel computation,
taking into account losses by load balancing issues and overhead as well.

2.14 x86 Multi-Core

The x86 processors of Intel and AMD currently come with a maximum of six and twelve
cores, respectively. Previously, AMD was ahead of Intel in the integration of the cores. Their
previous K10 processors (the Phenom X4 and Opteron Barcelona/Shanghai) integrated all
four cores on a single die. Intel was selling quad-cores as well (the Core 2 Quad), but these
consisted of two dual-core chips brought together in a singlepackage (Multi-Chip Module,
MCM). The two dies were integrated on FSB level, using the SMPlogic. Nowadays, AMD
has managed to keep its multi-core advantage by turning the tables on Intel: their twelve-core
consists of two six-core dies connected together in a single package.

Last year, Intel introduced the Core i7 processors, based onthe new Nehalem architecture.
All four cores of the ¯rst generation (code named Bloom¯eld) are implemented on a single
die. Furthermore, Intel reintroduced its Hyper-Threading T echnology (HTT), supporting
two threads per core. The latest parts of the Nehalem architecture (Westmere/Nehalem-C)
contain up to six cores (codename Gulftown), featuring up totwelve threads in total.

Both Intel and AMD have tried before to bring the total number of cores to eight, by
putting together two quad-cores in an SMP con¯guration. Intel introduced its Skulltrail

CHAPTER 2. MULTI-CORE CPUS 26

platform in 2008. AMD's FASN8 con¯guration (pronounced as fascinate) was announced and
previewed but never released. High-end systems like these are typically aimed at gamers and
tweakers. However, whether their favorite shoot-em-up can actually exploit that many cores
remains to be seen (see section 2.9.4). People actually in need of a double quad-core are
probably better of using a workstation.

Following in AMD's footsteps (who has been using the HyperTransport interface since
2003), starting with the introduction of the Core i7 Bloom¯el d series two years ago, Intel
replaced the old Front-Side Bus (FSB) by the QuickPath bus (QPI, Intel QuickPath Inter-
connect). Like the HyperTransport bus, the QPI bus is far more scalable (in terms of both
memory and multi-processor con¯gurations) than the traditio nal FSB.

2.15 Heterogenous Multi-Cores

Irregular algorithms on composite datastructures (e.g. a multiplication on a sparse matrix,
most elements having the value zero) are generally not supported by special-purpose proces-
sors like GPUs and application-speci¯c accelerators. According to Intel [90], these processors
often lack many of the mechanisms required for e±cient implementation of generic func-
tions, inter-thread communication and synchronization, and core-to-core communication, all
essential for a general-purpose machine. For example, afterdispatching parts of the data
and calculations over the various cores, the results will have to be collected and combined
again. In a general-purpose CPU this can be done far more e±ciently using the existing col-
lective communication primitives working throught the coh erent memory (SMP and cache)
than in an GPU providing no support for generic cross-chip inter-thread communication and
synchronization.

That is why Intel will to stick to processors containing only generic processing units for
general-purpose computing for as long as possible. They prefer to support special operations
through SIMD instruction extensions. \Systems will have both types of parallelism," says
Herbert Cornelius [25], director of Intel's Parallel Appli cation Center, \data parallelism as
well as thread parallelism. If you look at modern processors, you will ¯nd those two types
in one way or another in most of them, because it is a basic architectural way to gain more
performance."

\The trick in implementing instruction extensions is that y ou can make it °exible enough,
so you do not need specialized hardware like you have in the GPUs to do certain things. So
you want to be °exible, and you want it to be programmable as well. These two areas are
actually what Larrabee (see section 2.19.4) is addressing:°exibility and programmability. If
you only do certain tasks, you can always develop an ASIC (Application-Speci¯c Integrated
Circuit). The question is whether you really should do that. You can only do it if you know
for sure the thing will be the same for the next ten years."

\When you can integrate lots of cores onto a single chip, you can start to think about
dedicating certain cores to certain work. That can be done through special hardware. Or it
can be done through software, by saying this core only does this, that core only does that.
So there are di®erent ways to implement this."

\If you do only general-purpose cores, you will have to do it insoftware. Then the question
is, will it be fast enough? Larrabee will show that you can actually implement a graphics
pipeline in software and still get better performance than ahardware implementation. That
is an interesting observation. Furthermore, the °exibility and programmability will allow

CHAPTER 2. MULTI-CORE CPUS 27

people to do new things they can not do with a hardware-based graphics pipeline (GPGPU,
see chapter 3). Then you can do only what is available in the hardware, at least if you want
good performance. For example, there are advanced graphicstechnologies that you can not
do on specialized graphics hardware but that you can do very well on a generic processor."

By contrast, AMD aims to integrate CPU and GPU into a single ar chitecture. The
acquisition of GPU and chipset manufacturer ATI in 2006 was part of AMD's Fusion strategy.
Although the roadmap has been changed several times, postponing the introduction of the
¯rst Fusion products, this integrated design is still supposed to be the succesor to the current
K10 architecture. Next to graphics functionality, AMD will incorporate other specialized
cores into their many-core topologies, e.g. game physics, Java and encryption.

Despite Intel's ¯rm position on heterogenous multi-cores, the company has recently in-
troduced the Core i3 and i5 processors, some of these featuring two generic Nehalem cores
and a GPU. However, these products are aimed at the low-end (mobile) consumer market,
where power consumption, size and price are more important than performance. Chip man-
ufacturer VIA is targeting the same segment with their CoreFusion platform [160]. However,
from what is now known about Sandy Bridge, the code name for the succesor of the Nehalem
architecture, Intel might also bring the integrated GPU to t he high-end mobile and the basic
desktop markets.

2.16 AMD's Fusion strategy [sidebar]

Figure 2.5: All the major system ele-
ments of the APU | x86 cores, vector
(SIMD) engines, and a Uni¯ed Video De-
coder (UVD) for HD decoding tasks |
attach directly to the same high speed
bus, and thus to the main system memory.
[AMD]

AMD's Fusion strategy aims to bring CPU and
GPU together on a single silicon die (and in a
single architecture). The acquisition of graphics
processor and chipset manufacturer ATI in 2006
is part of that roadmap. That way, both sequen-
tial and parallel processing can be performed on
the same processor. Other specialized process-
ing engines might be added as well, resulting in
what AMD calls an Accelerated Processing Unit
(APU), including memory controllers, I/O con-
trollers, video decoders, display outputs, and bus
interfaces.

Programmers will be able to exploit the in-
tegrated processor using the Stream SDK, the
DirectCompute API (part of DirectX 11), and
OpenCL.

The ¯rst Fusion processor was recently
demonstrated. Commercial Fusion products
(code named Llano and Ontario) are due out in
2011 and aimed at low-end desktops, notebooks,
and netbooks [4].

CHAPTER 2. MULTI-CORE CPUS 28

2.17 Sun SPARC Architecture
[sidebar]

Of all manufacturers of general-purpose proces-
sors, Sun's many-core strategy is the most advanced. The company (now part of Oracle) has
not only implemented the most cores on a single die, it has also split its roadmaps to facilitate
di®erent workloads.

The UltraSPARC T2 (code name Niagara 2) [153] features eightcores, each being able
to execute eight threads. By bringing together four T2 Plus processors (code name Victoria
Falls) in an SMP con¯guration, a total of 256 threads is supported. Each core comes with a
single FPU (Floating-Point Unit), shared by all of its thread s. The T3 (code name Niagara 3),
currently being developed, will have eight or sixteen cores, each running up to sixteen threads.

The implementation of Sun's CoolThreads technology is di®erent from Intel's Hyper-
Threading Technology (HTT). Intel copied the parts of the pi peline holding the state of
an instruction execution stream, limiting the penalty of bl eeding and ¯lling the pipeline
when switching between threads (SMT: Simultaneous Multi-Threading). For now there is no
need to °ush the complete pipeline with each switch, minimizing the number of lost clock
cycles. However, implementing a multi-threaded architecture this way requires a lot more
transistors [90].

Sun uses a more e±cient design in which instructions from various threads can be mixed
together. The Thread Selection Unit (TSU) at the beginning of the pipeline selects which
instruction stream to issue. Instructions carry a label denoting the thread they belong to while
traveling through the pipeline. This so-called barrel implementation comes more naturally to
a RISC processor design (extending the scoreboard of a superscalar architecture), while the
longer and complexer pipeline of Intel's x86 CISC architecture was better o® with a simpler
approach requiring less administrative overhead.

The Niagara processors are speci¯cally designed for horizontally scalable workloads, aimed
at systems running front-end server applications like web, messaging and Java-based appli-
cation servers (see section 2.9.5). The ¯rst version (T1, code name Niagara, featuring eight
cores, each running four threads) came with a single FPU. Onededicated FPU per core was
added to the T2 after it became clear that customers were running other applications, like
databases for dynamic web sites, on the same systems.

Furthermore, next to the basic cores, the T2 contains eight cryptographic accelerators,
e®ectively making it a heterogenous multi-core processor.

2.17.1 Vertically Scalable Workloads

The ¯rst processor in Sun's fork of the UltraSPARC roadmap for vertically scalable workloads
was to feature sixteen cores, each running two threads. The cores were organized in four core
clusters, sharing instruction and data caches, and two FPUs.

Providing higher performance per thread, this processor (code name Rock) was aimed at
systems running back-o±ce and HPC applications like database, datamining and scienti¯c
software.

Last year, rumours said that the Rock processor was canceled. However, Sun refused to
con¯rm. After the acquisition of the company earlier this year, Oracle said they have killed
the project.

CHAPTER 2. MULTI-CORE CPUS 29

In general, after the takeover by Oracle, it is completely unclear what the future of the
Sun product lines and roadmaps looks like, making it hard forcustomers to make or keep
Sun a part of their IT strategy.

2.18 Vector Instructions

Vector instructions add an extra layer to the parallelism provided by cores and threads.
Typical users of these instruction set extensions in general-purpose computer systems are
multi-media applications. Allowing programmers (or compilers) to pack a number of values
(operands) in a single vector (register), to have them all processed by a single instruction,
they provide a limited form of SIMD functionality. For too lo ng vector instructions will result
in ine±ciencies caused by empty slots and unaligned memory accesses. That is why Intel
expects the number of elements per register only to grow slowly, a lot slower than the number
of cores per processor [90]. However, as table 2.1 shows, there is a trend to wider SIMD
vectors [19].

ISA extension introduced with year width of register bank
Intel MMX Pentium MMX 1996 64 bits (MMX registers)
AMD 3DNow! K6-2 1998 64 bits (MMX registers)
AMD Enhanced 3DNow! Athlon 1999 64 bits (MMX registers)
Intel SSE Pentium III 1999 128 bits (XMM registers)
Intel SSE2 Pentium 4 2001 128 bits (XMM registers)
Intel SSE3 Pentium 4 2004 128 bits (XMM registers)
Intel SSSE3 Pentium Xeon, Core 2 2006 128 bits (XMM registers)
Intel SSE4.1 Penryn 2007 128 bits (XMM registers)
Intel SSE4.2 Nehalem 2008 128 bits (XMM registers)
AMD SSE4a K10 2007 128 bits (XMM registers)
AMD SSE5 Bulldozer 2011 256 bits? (YMM registers)

Table 2.1: x86 ISA extensions [19].

2.19 Intel's Tera-scale Computing Research Project

Intel's Tera-scale project is the company's program for research into computing architec-
tures for the decade to come [107]. \Tera-scale computing looks at chips having Tera-scale
performance," says Herbert Cornelius [25], director of Intel's Parallel Application Center,
\TeraFLOPS or TeraOps, on a single processor having many cores. We have made a research
prototype with the code name Polaris (see section 2.19.1). We have put eighty cores on it in
a grid topology. And we use it to research various aspects of this type of computing, like how
the topology should look like, how the cores communicate, what could be potential interfaces
for memory and I/O, and so forth."

2.19.1 Intel Polaris Research Processor [sidebar]

CHAPTER 2. MULTI-CORE CPUS 30

Figure 2.6: Intel's 80-core Ter-
a°ops Research Processor. [In-
tel]

Intel's Polaris research processor, also called the Tera°ops
Research Chip, is part of the Tera-scale project [103]. It
contains eighty small cores and a stacked memory. Apart
from trying out the technological innovations, it is also an
experiment in topology. The Polaris processor was ¯rst
demonstrated in 2007.

2.19.2 Memory and I/O Interfaces

"We are working on several technologies to enhance mem-
ory and I/O bandwidth," says Cornelius, \for a system
needs to be balanced in processing, memory and I/O. As
part of our Tera-scale project, we wrote an article on how
to go to memory faster [92]."

\It is complicated, but we are progressing. We already
have some working prototypes. The basic idea to is to bring
memory closer to the processor and increase the number of
connection pins. For there is a limit on the number of pins
you can put onto a package. The 3D stacking technology
is trying to solve this by getting rid of the pins and use a direct connection between the
processor die and the memory die. That way, you have a much higher number of connections
between processor and memory chips, so you get a much higher bandwidth than is available
today. Using this stacking technology you can go to several Terabytes per second. That is
something we are aggressively pursuing to implement."

\On the I/O side, we have been working in the photonics area [104, 94] for quite some
time. We have already shown some prototypes deploying lasers to transfer data between
di®erent pieces and areas. The basic challenge is to convert from electrical to optical, and
then back. Usually, those modulators are pretty big. But we have succeeded to shrink the
modulators and we are able to put them on a die. You can actually have several modulators
on a die, that will do the conversion between electric and optical, and then transfer the signal
through a ¯ber wire to another place. These techniques will allow you to meet the Tera-scale
needs with Terabits per second of I/O bandwidth."

So to come up with a balanced many-core architecture, processor manufacturers like Intel
have to come up with drastic changes in processor chips, stacking dies and implementing
optical interconnects. \If you scale out the number of coresor processing units, you need to
scale up the memory and I/O bandwidth as well."

2.19.3 Software Tools

\In addition, we are also working on the software side," saysCornelius. \We recently added
a number of tools [], both in the area of multi-threading and message passing. We have intro-
duced Intel Parallel Studio [101, 102], an integrated environment for Microsoft Visual Studio,
to help programmers write multi-threaded applications. These tools support the design of
parallel applications, the identi¯cation of parallelism, d ebugging, correctness checking, and
performance tuning."

\Next to these thread-level tools, we have the Intel Cluster Toolkit [93], addressing the
message passing area. We have the Intel MPI Library [99] and the Trace Analyzer and

CHAPTER 2. MULTI-CORE CPUS 31

Collector [109]. And we have the VTune Performance Analyser[110] for MPI applications
running on a cluster. New feature is the Message Checker [98], that looks at the correctness
of an MPI application."

\So we are working on all of those areas, trying to make it easier for programmers to
exploit all the parallelisme that is and will be there in hardware."

2.19.4 Intel Larrabee Processor [sidebar]

The Larrabee processor is part of Intel's Tera-scale research project (see section 2.19). It is a
many-core processor combining relatively small and simple cores based on the older Pentium
P54C architecture and graphics pipeline functionality in a single architecture [95]. It was
rumoured to contain 24, 32 or 48 cores.

Intel originally planned to release the ¯rst Larrabee based product this year, incorporated
in a consumer 3D graphics card. This way, Intel wanted to prove that a general-purpose
processor is powerful enough to power a graphics pipeline. However, since early performance
was disappointing, the product was canceled. For now, the Larrabee architecture will be used
as a research and HPC development platform.

Chapter 3

GPGPU

3.1 Introduction

Over the last three years, large-scale consumers of computing power have discovered the
graphics processor as a fast and low-cost source of processing capacity. The best-known
examples are the GPUs (Graphics Processing Units) of nVidiaand ATI (nowadays part of
AMD), and IBM's Cell processor [134]. Developers that have ported their code to one of these
architectures report speedups by two orders of magnitude compared to traditional CPUs.

However, this speedup does not come for free. The biggest problem when porting an
application is the mapping of the algorithm onto the GPU architecture and exploiting all
available parallelism. That means that the algorithm should contain enough parallelism in
the ¯rst place. And we are not talking about a handful of high-level threads here, like we are
running on a multi-core processor these days. On a GPU thousands or even tens of thousands
of mini-threads that all perform the same action at the same time on a small piece of data
should be created.

3.2 General-Purpose Computing on GPU

GPGPU, short for General-Purpose Computing on GPU, refers tothe usage of a GPU for
general-purpose computing tasks. Since modern computer games and visualization appli-
cations require a lot more performance than ordinary programs, nowadays GPUs o®er far
more raw computing power than a CPU. In terms of FLOPS (Floating-Point Operations Per
Second), the performance of a GPU can be two orders of magnitude higher than that of a
CPU [130, 15].

However, exploiting a GPU for general-purpose computing tasks is no sinecure. Since
GPUs were designed for graphical computations, i.e. to process datastructures like arrays,
pixels, colors, palletes and textures in parallel, only very speci¯c calculations could be trans-
fered to the GPU. As with all hardware, especially with parallel systems, algorithms have to
be mapped onto the underlying architecture.

Now that GPUs support parallel °oating-point calculations as part of their shaders and
programmable pipelines, the functionality of the GPU has become far more generic than it
used to be. Nowadays, GPUs provide a stream processing model, allowing the execution

32

CHAPTER 3. GPGPU 33

of traditional parallel computations used in High-Performance Computing (HPC), ¯nance,
engineering, and industrial applications (HPTC: High-Performance Technical Computing).

However, manufacturers did not recognize the opportunity until end users started exploit-
ing these new capabilities. Only after graphics adapters and game consoles started to be used
for HPC applications, manufacturers extended their existing product lines to include GPGPU
solutions.

For example, some users deployed a stack of PlayStation 3 systems to do their parallel
calculations [119, 125]. Today, IBM o®ers the Cell processorthat was speci¯cally designed
for this game console as a parallel computing blade [50]. Thevery same processor will also
be available for the mainframe, to facilitate MMORPGs workloads (Massively Multiplayer
Online Role-Playing Games) like the grid producing the Second Life environment [51].

nVidia provides the Tesla products [141], based on their GeForce 8 GPUs. ATI (now
part of AMD) does a similar thing with their Stream Technolog y (formerly Close to Metal,
CTM) [7, 8].

GPUs are traditionally programmed using graphics languages like OpenGL (Khronos
Group) and Direct3D1 (Microsoft). Later on, nVidia o®ered the CUDA programming model
(Compute Uni¯ed Device Architecture)for C/C++ and Microsof t released DirectCompute as
part of DirectX version 11, both speci¯cally aimed at GPGPU pr ogramming. Today, Apple's
OpenCL (see section??) is supported by alle vendors and quickly becoming the de facto
standard.

3.3 GPGPU Programming Model [sidebar]

GPGPU requires a completely di®erent way of programming. Forgraphics processors were
never designed to process common computing jobs. These are fully optimized for graphics
processing, i.e. massively parallel computations on graphics datastructures like arrays, pixels,
colors, palettes, and textures. This means that exploiting this speci¯c hardware requires
quite some old-fashioned handiwork and that only a very speci¯c class of algorithms can be
e®ectively parallelized this way.

Where on ordinary processors the centre stage is occupied bythe control °ow, denoting
the way the algorithm processes data and helper variables, GPUs are based on the so-called
stream processing model. GPGPU computing revolves around matrixes and other large datas-
tructures, where super-fast and in parallel relatively small computations are performed on the
individual elements.

That is why graphics processors have far larger local memories and register banks than
traditional CPUs. This makes GPUs especially suited for massively parallel applications as
being used in science (HPC: High-Performance Computing), ¯nance (Monte Carlo calcula-
tions), and engineering and industry (HPTC: High-Performance Technical Computing).

In that sense, GPGPU systems are a lot like the old supercomputers that were speci¯cally
meant for vector calculations. Ongoing improvements in °oating-point support corroborate
this observation. Nowadays, Tesla-based GPGPU clusters areo®ered both by specialized

1Microsoft provides the closed source DirectX programming libraries , a standard part of the operating
system since Windows 98 and Windows NT 4.0. These libraries are aimed at developers of computer games,
both for the Windows and XBox platform. The Direct3D library is the one that speci¯cally interfaces to the
underlying GPU hardware. Direct3D version 11, introduced in 2009, also s upports GPGPU and multi-core
programming.

CHAPTER 3. GPGPU 34

vendors and by large hardware vendors like Asus, Dell, Fujitsu, HP, and Lenovo [146]. These
nVidia systems are extolled as personal super computers [142].

Looking at the margins made on high-end systems for HPC and HPTC, manufacturers of
graphics processors were surprisingly slow to adopt this GPGPU trend. For example, double-
precision °oating-point operations have been introduced over the last years, but performance
in that area is still lacking.

The same goes for access to memory. Graphics processors deliver their highest performance
at successive, relatively simple, massively parallel operations on large matrixes, using as few
as possible control °ow instructions like loops and conditional branches.

Despite those limitations, both nVidia and ATI currently o®e r a product line especially
aimed at GPGPU applications. For ATI this portfolio consist s of the Stream products (for-
merly Close To Metal, CTM) [7, 8]. nVidia o®ers the Tesla cards[141], based on their
GeForce 8 GPUs. The latter can be deployed using the CUDA library (Compute Uni¯ed
Device Architecture), nowaydays being the de facto standard.

3.4 GPGPU Programming

Stream processors typically support SIMD instructions (Single Instruction, Multiple Data)
working on small vectors, traditionally representing pixels, colors and normal vectors. How-
ever, while graphical applications have shaders working onvertices and fragments, GPGPU
applications generally have a single function (a kernel) executing in parallel on hundreds of
independent vectors (records).

This set of records is called a stream (e.g. a two-dimensionalgrid), for GPUs do not know
the concept of RAM (Random Access Memory). Data can only be read from an input channel
and written to an output channel. Traditionally, the Textur e Mapping Unit (TMU) supplies
the input and the frame bu®er serves as the output channel. Using special instructions, output
can be written to a texture too. Other supported datastructu res include dense matrices (most
elements having the same value), sparse matrices (most elements having the value zero), and
tree-like structures.

The application of a speci¯c kernel function to each record iscalled a mapping. Other
operations include reductions (a stream is reduced to a smaller set of vectors or even a single
statistic, e.g. the average or maximum), ¯lters, sorts, and searches. Scatter and gather refer
to the process of positioning vertexes and reading textures, respectively.

GPGPU applications perform better when a lot of calculations can be performed on a
large stream of independent records, maximizing processing and minimizing memory trans-
actions. Support for traditional control °ow instructions l ike loops and conditional branches
is improving, but still has a heavily negative impact on performance.

3.5 nVidia's Tesla Portfolio

\nVidia originally started with graphics on an ASIC (Applic ation-Speci¯c Integrated Cir-
cuit)," says Sumit Gupta [45], Senior Product Manager for the Tesla GPU Computing Group.
\From the year 2000, as graphics became more and more programmable, GPUs were deployed
for general-purpose computing. Then we changed our architecture philosophy to a fully pro-
grammable processor. We added shared memory, which is normally no part of a graphics

CHAPTER 3. GPGPU 35

engine. And last year, we added double-precision calculation, while graphics are limited to
eight to twelve bits."

The CUDA library was instigated ¯ve years ago, when a dedicated team started the de-
velopment of the toolkit, including a compiler and a debugger for C. \CUDA consists of
hardware and software," says Andrew Humber, Senior PR Manager for nVidia's Tesla &
CUDA Enterprise Products. \We made certain changes to the architecture, to enable the
C library. CUDA is available for all three product lines: GeForce for consumers, Quadro for
visualization, and Tesla for HPC. The Quadro products undergo more QA (Quality Assur-
ance) and testing. The Tesla products have been stress-tested for HPC applications. These
have to run 24 hours a day, 365 days a year." According to Gupta, the CUDA products come
with the same GPU as the GeForce cards, but the boards have been modi¯ed. For example,
Quadro cards have more ports and extra features to support OpenGL. Tesla products feature
larger frame bu®ers, for computing on large data sets.

According to Gupta, the biggest challenge lies in the parallel programming of hundreds
of cores at the same time. \That is why we invested a lot in CUDA, which is very similar
to OpenCL. You can learn CUDA in a week, and within a month you can write complex
applications that outperform a CPU. Currently, we support C /C++ (CUDA), DirectX 11
(DirectCompute library) and OpenGL." At this moment, Fortr an (CUDA) and OpenCL as
supported as well [11].

In the Netherlands, the VU University Amsterdam is developing a CUDA programming
course. They have the ambition to eventually become an `nVidia Center of Excellence'.
In Belgium, the University of Antwerp has similar ambitions . According to nVidia [145],
Delft University of Technology and the University of Amster dam are alreay o®ering a CUDA
programming course.

Commercial applications of GPGPU are generally not made public. However, several
articles on a case at BNP Paribas have been published [137]. \But ABN-AMRO and ING
are using GPGPU for their risk calculations too. ABN-AMRO is p orting their modelling
tools to GPU." According to Humber, GPGPU is most often deployed in ¯nance, the oil
and gas industry, and the medical world. \But customers are not willing to talk about these
applications. This technology is still young, so very competitive edge."

3.6 GPGPU Systems

3.6.1 Cray CX1

The Cray CX1 system [26] is built on a blade chassis. Filled with eight blades, each containing
two quad-core processors, the system is scalable up to 64 cores. The blades are interconnected
using Gigabit Ethernet or In¯niBand.

Apart from the Intel Xeon based blades, there are also double-width boards available.
These provide extra PCI slots for two additional nVidia Quadro FX video modules, aimed at
visualization applications.

More interesting from a GPGPU perspective is the combination of a Xeon blade with the
Tesla C1060 GPU module, a GPGPU card without video connector. Its functionality is avail-
able through nVidia's CUDA SDK (Software Development Kit) a nd C compiler. According
to Cray [138], four Tesla processors provide 4 TFLOPS, giving speci¯c applications a speedup
up to a hundred times.

CHAPTER 3. GPGPU 36

The CX1 system runs Red Hat Enterprise Linux (RHEL) with a HPC software stack, or
Windows HPC Server 2008. On request, Cray can install additional applications and libraries
for the customer.

Cray refers to the CX1 as a personal supercomputer. However,while the traditional supers
were instruction/vector oriented SIMD systems, the stream processing GPUs are more data-
oriented.

Being a cluster-based processing unit for personal or workgroup use, these systems are
positioned between the traditional workstation and the HPC cluster. Since the CX1 is ICR
certi¯ed (Intel Cluster Ready, see section 5.4.1), this system can be considered a ready-to-go
cluster, running HPC and visualization applications certi¯ed for this platform out-of-the-box.
The list price runs from 25 thousand to 60 thousand dollar. See IDC's white paper The Cray
CX1 Supercomputer: Leveraging the Cray Brand in the HPC Workgroup Market [84] for a
market analysis.

3.6.2 HPC for the Workgroup [sidebar]

According to IDC [84], the HPC market doubled during the period 2003{2007 to $10.1 billion,
driving the combined total including software, storage and services to $18.3 billion. With a
15.5 compound annual growth rate, the HPC server segment grew between three and four
times as fast as the over-all server market. In 2008 the HPC server market is projected to
vault past 11 billion. Clusters, currently moving to the bla de form factor, will be responsible
for almost 70 percent of this market. More than 60 percent will be deployed on workgroup
or departmental level. IDC expects this market segment to grow from $5.2 billion in 2008 to
$6.7 billion in 2012.

3.6.3 Tesla Personal Supercomputer

The Tesla Personal Supercomputer [142] is a GPU-centric system, just like the Cray CX1
scalable up to four GPU modules, providing a maximum of 4£ 240 = 960 computing cores.
Each core contains a 64 bit ALU(Arithmetic Logic Unit),supp orting both single-precision
and double-precision °oating-point calculations conformingto the IEEE 754 standard. How-
ever, at speeds of 933 GFLOPS and 78 GFLOPS for single-precision and double-precision
calculations respectively, the double-precision performance of the C1060 GPU is lagging.

Each GPU in the Tesla Personal Supercomputer has its own fourGbyte of local memory,
accessible with transfer rates up to 102 Gbyte per second. Communications between the
GPUs takes place through shared memory. The dual-connectioninterface allows transfer
rates of 2£ 6:4 = 12:8 Gbyte per second over PCI Express.

The system is controlled by a single quad-core x86 host processor. It runs RHEL, SuSE
Linux or Windows XP. Since the machine is based on a high-end x86 server motherboard, with
the GPGPU modules placed in the PCI slots, users could even build their own system. Ready-
to-go con¯gurations are available from various system builders for prices below $10 thousand.

3.6.4 nVidia Tesla S1070

The Tesla S1070 o®ers a similar con¯guration as the Personal Supercomputer in a 1U rack-
mounted form factor. This allows users to build larger, high-density computing farms by
stacking these `pizza boxes' on top of each other in a datacenter.

CHAPTER 3. GPGPU 37

3.6.5 nVidia Tesla C1060

The Tesla C1060 holds the GPU (running at 1.3 GHz) that forms the base under all nVidia-
based GPGPU systems described above. It is a dual-slot PCI module, that can also be
purchased separately to be put in a workstation.

Next to the GPU, the module holds 4 Gbyte of local GDDR3 memory (Graphics Dou-
ble Data Rate 3), accessable through a 512 bit wide interfaceproviding peak transfers of
102 Gbyte per second.

3.7 Future Direction in GPU Computing

At his presentation Future Direction in GPU Computing at SIGGRAPH Asia 2009, Toru
Baji, Solution Architect at nVidia, stated that single-thre aded CPU performance (based on
Instruction-Level Parallelism, ILP) is no longer scaling [11]. The only way forward is to ¯nd
other forms of parallelism (i.e. Thread-Level Parallelism,TLP).

According to Baji, nVidia's is o®ering just that with their Te sla portfolio. And the
performance gap between GPU and CPU is growing for both (single-precision) °oating-point
operations and memory bandwidth.

Key to exploiting this hardware is a programming system that abstracts the parallelism,
e®ectively isolating the programmer from the details of parallel programming. Currently,
nVidia is supporting C/C++ (CUDA), DirectCompute (DirectX 11), Fortran (CUDA), and
OpenCL.

Fermi, the successor to nVidia's current Tesla product line, will feature 512 cores instead
of 240, increased °oating-point performance, and an extendedcache hierarchy. The CUDA
toolkit will be upgraded to version 3 (code name Nexus).

Figure 3.1: nVidia Fermi roadmap: number of cores [11]. [nVidia]

CHAPTER 3. GPGPU 38

3.8 The STI Cell processor

The architecture of IBM's Cell processor lies between thoseof the classic general-purpose
CPU and the graphics-speci¯c GPU. The Cell Broadband Engine (CBE), as it is o±cially
called, was developed by the STI consortium, in which Sony, Toshiba and IBM cooperated
in developing the processor that would power the PlayStation 3. After having discovered the
possibilities of the Cell for other applications, researchers at universities started to stack these
game consoles into huge piles of parallel processing power.

Figure 3.2: Peter Hofstee, the Chief Archi-
tect for the Cell processing cores at IBM:
\The main design goal for the Cell proces-
sor was e±ciency, in combination with pro-
grammability and deployability." [IBM]

However, Peter Hofstee [48], the Chief Archi-
tect for the Cell processing cores at IBM, assures
us that the Cell processor was developed for a
wider deployment from the beginning. \We were
looking for a technology that could be used for
other applications as well. The main design goal
was e±ciency, in combination with programma-
bility and deployability."

When designing the Cell architecture, a lot of
e®ort was put into overcoming the biggest ine±-
ciency: access to main memory. \DRAM mem-
ory (Dynamic RAM) is a long way from the pro-
cessing cores. That is a huge problem with all
general-purpose processors: our own, Intel's and
AMD's. If you look at the °oor plan of a modern
microprocessor, you will have trouble ¯nding the
adders and the multipliers. Two thirds of the
surface area, sometimes even more, is taken by
the caches. These give the programmer the idea
that main memory is close by and in¯nitely large. But that is a v ery expensive illusion."

That is why IBM has decided to give up this transparency to the programmer for the Cell
architecture. Apart from the central core, based on the Power processor, the Cell features
eight so-called Synergistic Processing Elements (SPEs). These can be deployed simultane-
ously for parallel tasks. However, main memory is not directly accessable from these cores.
Programmers have to explicitly state which variables should be loaded to the local store and
which variables should be written back to memory after the calculation is completed. These
`shopping lists' make the Cell a hard processor to write codefor.

\Before starting the actual calculation, you have to make a list of all the `ingredients'
your program needs," says Hofstee. \That data is then transferred from the main memory
to the local store of this processor core. After completing the program, you do the opposite.
You create a list of all the results that should be transferred back to main memory. This is
fundamentally di®erent way to cope with the slowness of memory transactions."

However, these explicit memory transfers makes it di±cult for the Cell processor to gain
wider acceptance. \As with a lot of other innovations in computer science, you get a situation
where universities and HPC users are the ¯rst to deploy this new technology. If you have a
big computer system, you can a®ord to put a lot of e®ort in programming that machine. At
this moment, we are working at IBM to make the Cell processor easier to deploy.

More information on the Cell processor can be found at:

CHAPTER 3. GPGPU 39

² Wikipedia: http://en.wikipedia.org/wiki/Cell_%28microprocessor %29

² IBM: http://www.research.ibm.com/cell/

3.8.1 2000 PlayStations [sidebar]

Figure 3.3: If you look at the °oor plan
of a modern microprocessor, you will have
trouble ¯nding the adders and the multi-
pliers. A large part of the surface area is
taken by the caches. [Intel]

The American Air Force Research Lab (AFRL)
recently published a Request For Proposal
(RFP) for 1700 PlayStation 3 systems [36]. Ac-
cording to NewScientist [132], the game consoles
will be added to the 300 PlayStations already in
use at the lab. The supercomputer cluster will be
used, among other tasks, to simulate the work-
ings of brains (neuromorphic processing2).

The PlayStation systems have serious limita-
tions compared to IBM's Cell-based supercom-
puters, in memory size, the speed of the inter-
connects, and the 32-bit °oating-points. How-
ever, the AFRL expects the cluster to run at
one-¯fth the speed of IBM's Roadrunner, one of
the worlds fastest supercomputers, at 1/60th the
price ($2 million).

2http://www.newscientist.com/article/mg19325891.500-the-mind-chip.html?full=true

Chapter 4

CPU/GPU Comparison

4.1 The LOFAR Software Telescope [sidebar]

Figure 4.1: LOFAR consists of seven thou-
sand separate antennas. Together they
form ¯ve spiral-like arms. [LOFAR]

Until recently, to be able to receive detailed
images from space, you had to build a huge
parabolic dish. The latest telescopes however,
are built from a large array of small antennas.
LOFAR (Low Frequency Array), a project by
ASTRON (the Netherlands Institute for Radio
Astronomy), consists of seven thousand separate
antennas, lined up in the area around Exloo,
Drenthe. Together they form ¯ve spiral-like
arms. In the Netherlands, this radio telescope
occupies an area with a radius of one hundred
kilometers. But there are also antenna stations
based in Germany, the United Kingdom, France,
and Sweden. The result is the equivalent of a
dish with a surface of one square kilometer.

LOFAR is to give us a view on the begin-
ning of our universe. That requires a telescope a
hundred times more sensitive than what we had
before. We would never be able to build this
telescope in the form of a dish, be it only for the
swivelling mounting. LOFAR delivers that high
accuracy at very low costs. The rotation of the
earth is used to complete the image. And there
is no need for aiming: the whole sky is covered
at the same time.

However, despite the low price of the instal-
lation, this very high accuracy does not come for
free. For all incoming signals require a massive amount of processing. \We cover 248 bands,
each divided in 256 subchannels," says researcher Rob van Nieuwpoort [135]. \Each channel

40

CHAPTER 4. CPU/GPU COMPARISON 41

is sampled 768 times a second. Those 16 bit samples are converted on-site at the antenna
stations to 32 bit single-precision numbers by FPGAs (Field-Programmable Gate Arrays)."
And then that output is sent to Groningen over dedicated optical ¯ber connections.

To combine all these measurements, also over time, a heavy software pipeline has been set
up. \With this telescope, everything is moved to the software." The IBM Blue Gene system
at the back-end processes a total of 200 Gigabit per second [133]. That makes LOFAR one of
the largest data processing sites in the world. To give an idea: the LHC particle accelerator
(Large Hadron Collider) at CERN in Swiss generates a mere 300Mbps of raw data.

More information on LOFAR can be found at:

² Wikipedia: http://en.wikipedia.org/wiki/Lofar

² LOFAR: http://www.lofar.org/

4.2 GPGPU for LOFAR

Figure 4.2: Rob van Nieuw-
poort, researcher at ASTRON:
\Theoretically, only ten ATI
5970 cards would be required to
match the computing power of
the IBM Blue Gene." [Rob van
Nieuwpoort]

ASTRON, the Netherlands Institute for Radio Astronomy,
is one of those research institutes looking into the capa-
bilities of General-Purpose Computing on GPU (GPGPU).
The software of their LOFAR radio telescope is very well
suited to be run on a graphics processor. Researcher Rob
van Nieuwpoort has tested the correlator algorithm for LO-
FAR at various platforms and compared the results [136].
Reference was the IBM Blue Gene computer that is cur-
rently situated at ASTRON in Groningen for the LOFAR
pipeline. \That system has a capacity of 42 TFLOPS
(thousand billion Floating-Point Operations Per Second)."
However, a single ATI processor has a peek performance
of 1.2 TFLOPS. Theoretically, thirty of these processors
would be su±cient to match the Blue Gene. \There are
two of those chips on a 4870 card, resulting in 2.4 TFLOPS
per PCI slot. That is really unprecendented. The new 5970
cards have a peek performance as high as 4.6 TFLOPS.
That would require only ten cards to match the Blue Gene
computing power."

Of course, the actual practice is di®erent from what
this quick juggling with ¯gures would suggest. \Important
question is whether you will be able to actually reach this
peek performance. Our calculation is embarrasingly simple:
just multiplying and adding. But we do have to get all this
data in and out of the processor. Besides that, we want to
know what the power consumption of the processor is, so how many TFLOPS do we get per
Watt."

During the last two years, Van Nieuwpoort has compared ¯ve di®erent platforms: the
current Blue Gene computer, the Intel Core i7, the ATI 4870, the nVidia Tesla C1060, and the
IBM Cell processor (both singly and in dual-processor con¯guration on a blade). For each of
those, the actual performance was measured, ¯rst without thememory transactions (running

CHAPTER 4. CPU/GPU COMPARISON 42

the calculations on dummy data), then including the memory transactions. Figure 4.3 presents
the results of those tests. These clearly show that the Powerand Cell systems have no trouble
at all reaching their peek performance. For all three systems, the actual performance including
memory transactions lies over 90 percent of peek performance.

Figure 4.3: Performance of the LOFAR correlator algorithm on various platforms, including
percentages of the theoretical peek performance of that speci¯c platform. [Rob van Nieuw-
poort]

As these numbers show, for the Power architecture, transport capacity in and around the
processor is su±cient to keep the cores at work continuously.Here, the low clock speed of
these systems obviously does the trick, by completely avoiding the memory wall. \Each Power
processor contains four cores", says Van Nieuwpoort, \but each is running at only 850 MHz.
That is very low for a modern microprocessor. But a Blue Gene system simply contains an
awful lot of those, 12,480 to be precise. Furthermore, this system features a lot of special
networks, ¯ve di®erent types in total. That is were the high performance of the IBM system
comes from."

The di®erences between the various computing cores immediately becomes clear when
comparing the Blue Gene processors to Intel's Core i7 CPUs. The latter reaches only two
thirds of its peek performance, but that is still multiple ti mes the performance of a single
Power processor. \Because of their low clock speed, they consume very little power," says Van
Nieuwpoort, \And since cooling can be kept relatively simple, IBM can pack these processors
very tight together. This is how you can get very high TFLOPS per cubic metre. That is a
completely di®erent league."

The two GPUs both reach about one third of their peek performance, without memory
transactions that is. The di®erence between the nVidia and ATI processors becomes clear
when data tra±c is also taken into account. Then the ATI GPU rea ches only 14 percent of
its peek performance, while nVidia's falls back only slightly. So, althought the ATI processor
seems to outperform nVidia's GPU at ¯rst sight, the latter act ually performs better (for this
algorithm) when memory transactions are put into the equation. \ATI has great hardware,"
says Van Nieuwpoort, \it is really fast. However, moving data from your CPU to the GPU
over the PCI bus is terribly slow. Theoretically, that bus should have a speed of eight Gbps,
but in practice it only reaches ¯ve. Furthermore, the ATI chip does a bad job of double
bu®ering: processing on the ¯rst bu®er while loading the next. The nVidia processor is
much better at that; processing and loading at the same time has only a slight impact on its
performance." Whether ATI's bad performance in this matter is caused by the drivers or the

CHAPTER 4. CPU/GPU COMPARISON 43

architecture, Van Nieuwpoort could not tell.
Despite ATI's graphics processor having a theoretical peekperformance of 1.2 TFLOPS,

performance of both GPU's lies between 200 and 400 GFLOPS. That is still ¯ve times higher
than the performance of the Core i7 CPU. \This much heard-of speedup by two orders of
magnitude I ¯nd not scienti¯c," says Van Nieuwpoort. \People s aying their application is
running a hundred times faster on a GPU than it was on a CPU, alluse a di®erent base. For
the one, it is a Core i7. For the other, it is a three year old Opteron processor." Furthermore,
most of the times a non-optimized executable as generated by astandard compiler back-end
is used, without SSE instructions (Streaming SIMD Extensions).

\So, that is why I am not saying this processor is ¯ve times faster than the other. I say
`this chip reaches thirty percent of what it theoretically could do, having all these multipliers,
adders and other units'. That is what makes this a square game."

Chapter 5

Programming Models

5.1 Introduction

While over the last years increasing the performance of computer systems has mainly been the
problem of processor designers, that is no longer true. Exploiting the new many-core designs
has now become a problem of the software developers. Processor manufacturers like Intel and
Sun, platform providers like Microsoft, and software vendors selling Integrated Development
Environments (IDEs), all try to facilitate developers in pa rallelizing their new or existing
software.

5.1.1 Parallelizing Your Code

Clearly, multi-threading is the primary programming model, mapping natively onto a many-
core processor architecture. Unfortunately, implementing a multi-threaded software design
requires quite some tedious handiwork.

Reworking existing applications may not always be feasable. Apart from the investments
to be made, the original software designers may no longer be available, documentation may
be lost or never have been written at all, or tools may be outdated or unavailable. This
software may be brought up to speed by replacing the low-levellibraries by siblings that do
exploit modern processor architectures.

According to Herbert Cornelius [25], director of Intel's Parallel Application Center, the
ubiquitous use of GUI builders for Java and C++ does not necessarily mean modern (business)
applications cannot be parallelized. \It actually has someadvantages. For the higher level you
work on, the more coarse-grain parallelism you can ¯nd. So, thedi±culty of extracting the
parallelism is not necessarily related to software development methods like rapid prototyping
(RAD: Rapid Application Development) or higher-level graphical programming."

\Java natively provides you with multi-threading functiona lity (JavaThreads). And there
are other languages having a native threading concept builtin the environment as well, like
ADA, and functional languages like Erlang or Haskell. That is great for people who can start
from scratch and write their software in a new language. It ismore problematic when you
have legacy code, where you have to ¯nd and implement the parallelism. One way would be
to use modules, routines or libraries that themselves are multi-threaded. Our Math Kernel

44

CHAPTER 5. PROGRAMMING MODELS 45

Library (MKL) [96] and our Integrated Performance Primitiv es (IPP) [97] actually provide
that. They utilize multi-threading and multi-core as much as t hey can, hidden in the library.
So as soon as a programmer starts using pieces of these libraries, he will automatically get
the bene¯ts."

AMDincludes similar optimizations in their Core Math Libra ry(ACML,ACML-GPU),LibM,String
Library(libsst),and SSEPluslibrary [5].

5.1.2 Automatic Parallelization

So, the hardest part seems to lie on the mid-level, requiring alot of e®ort from the programmer
and a lot of intelligence in the compiler back-end. \The problem of automatic parallelization
is as old as there are computers," says Cornelius. \There were a lot of attempts in the past
to try and come up with this automatic parallelization compi ler. And all of them failed."

\It is a hard problem, we know that. We try to improve the compi ler as much as we
can, just like we do with vectorization. The latter is a littl e easier, because the scope of the
control °ow analysis you have to do is fairly limited. Automat ic parallelization is a much
harder problem. It is probably NP-complete, meaning that you could do the analysis, but
not within reasonable time."

\There are some areas where it is easy to understand what is going on in the program,
where the compiler can actually do the parallelization automatically. But normally any tool
will need some type of intelligence or guidance by the programmer to help. For example,
OpenMPwill actually do the parallelization `automaticall y', by making it easy for the pro-
grammer to tell the compiler what to parallelize. By taking care of the nitty-gritty details
under the hood, it frees the programmer from all the details on how to implement it. So he
can focus on the application, saying this is a parallel regio, that is a parallel loop, and just
insert a pragma (compiler directive)."

\This way of helping the compiler is well accepted in the scienti¯c and engineering world.
It is not that much used in the commercial area, where they often use explicit threading,
either through POSIX Threads (Pthreads), or Win Threads on Windows."

5.1.3 Forward Scalability

Apart from the programmers productivity and legacy software issues, there is also a portability
and scalability problem [90]. New or reworked code needs to be easily portable to systems
containing an ever increasing number of cores, and to processors supporting wider and new
SIMD (Single Instruction, Multiple Data) instruction set e xtensions (performance scaling, see
section 6.5.4).

Coupled to Moore's Law, Intel expects the number of cores perprocessor to double with
each processor generation [90]. Connected to Intel's tick-tock model for R&D and product
development [108], that leads to processors carrying 32 cores by 2014.

5.2 Threads

After processes, threads are the next level of parallelism.Where each process has its own
(virtual) memory space and can communicate to other processes only through the operating
system (IPC: Inter-Process Communication, e.g. ¯les, sockets, pipes, shared memory seg-
ments, and message queues), threads have their own register¯le and stack but share the

CHAPTER 5. PROGRAMMING MODELS 46

same memory space and other resources (e.g. I/O), making communications between threads
extremely fast.

Although the thread execution model is also available on single-processor systems (just
like processes and applications implemented by the scheduler of a multi-tasking operating
system, using a Time-Division Multiplexing scheme (TDM), they can increase application
performance dramatically when being run concurrently on a multi-core processor. For this
way, threads can be spread over the available cores and be executed in parallel.

5.2.1 Software Parallelism [sidebar]

² application:

{ each user can have several processes running in parallel on amulti-user multi-
tasking operating system,

{ preemptively scheduled,

{ resources are only shared through the operating system;

² process:

{ applications can consist of several processes,

{ preemptively scheduled,

{ resources are only shared through the operating system;

² thread:

{ processes can consist of several threads,

{ usually preemptively scheduled,

{ resources, i.e. memory, are usually shared using special thread synchronization
mechanisms;

² ¯ber:

{ a lightweight thread,

{ cooperatively scheduled, allowing programmers to do the scheduling explicitly;

² protothread:

{ a lightweight thread,

{ cooperatively scheduled, allowing programmers to do the scheduling explicitly,

{ no stack (and thus no parameters) available; all values mustbe exchanged using
global variables.

CHAPTER 5. PROGRAMMING MODELS 47

5.2.2 Thread Synchronization

Since threads share a single memory space, threads belonging to the same process should
preferably not be executed on di®erent processors, let alonedi®erent computers (i.e. dis-
tributed computing). In this case, heavy inter-processor communication would cause severe
overhead. For in a modern computer system, most active data resides in the processor caches.
The synchronisation between processors (through a cache-coherence scheme) forms the most
important limiting condition when designing SMP systems (Symmetric Multi-Processing) and
severely impacts the performance of a parallel algorithm.

Furthermore, sharing the same memory (and possibly other resources) requires synchro-
nization mechanisms between the threads. First, the threadprogramming model should
provide atomic operations on shared memory locations. For example, when incrementing
a variable, a thread has to be sure that the variable was not changed by another thread
between reading the current value and writing the new, incremented value. A problem like
this is called a race condition. Usually, these problems areavoided using mutexes (mutual
exclusion): special variables that can be evaluated and setusing atomic operations (e.g.
test-and-set).

5.2.3 Atomic Operations

So, critical sections of parallel code, accessing shared resources, are protected by setting a
mutex at the start and unsetting it at the end. This atomic ope ration guarantees that one
and only one thread at a time can access this particular resource. If the mutex has been
set succesfully, access to this resource has been granted. If the mutex could not be set, the
thread has to wait (blocking) or to move on (for now) (non-blocking). As soon as the mutex
becomes unset, one of the waiting threads is granted access.

Since mutexes may cause other threads to stall, decreasing over-all application perfor-
mance, critical sections have to be kept as small as possible. This not only has an impact on
the program code itself, but also on the organization of datastructures and other resources.

5.2.4 Deadlocks

Second, there is a general need for threads to be able to stalltheir execution until another
thread has ¯nished a certain task.

However, errors in the software coding can cause situationswhere all threads are waiting
for another to reach a certain point (i.e. to give up reservedresources or to complete a certain
task). For example, it might happen (due to programming bugs) that a thread is waiting
for a resource to become available, while there is no longer athread running that will unset
the associated mutex. This is called a deadlock, or a livelock if the threads are still being
executed but not progressing. Both result in resource starvation.

In practice, deadlock problems are more complicated than the example just given. In-
stead of simply no thread being available to unset a mutex, several threads can hold each
other in a deadly embrace (compare the Dining Philosophers Problem; see subsection 5.2.5).
Furthermore, most often deadlocks and other synchronization issues can not be reproduced,
making it very hard to debug multi-threaded code.

CHAPTER 5. PROGRAMMING MODELS 48

5.2.5 The Dining Philosophers Problem [sidebar]

Five philosophers are sitting around a circular table. While not thinking, they eat spaghetti.
Next to each philosopher lie two forks, each on another side of his plate. Unlike any Italian, to
eat his spaghetti, a philosopher needs both forks. However,since each fork is shared with his
neighbours, a philosopher wanting to eat might have to wait for his neighbour (or neighbours)
to ¯nish before he can get hold of both forks. A deadlock may occur when all philosophers
have managed to get a fork from the left-hand side, and are waiting for the fork from the
right-hand side to become avaiable (or the other way around),creating a circular dependency.

5.2.6 Other Synchronization Problems

On the execution level, semi-deadlocks can occur when a thread is trying to complete a task
involving reserved resources but is being hindered by otherthreads actively waiting (busy
waiting) for the resources to become available (spinlock). A lock convoy occurs when the
overhead of context switches by threads waiting for a lock tobecome available starts to
impact the performance of a system (compare thrashing).

Another problem is priority inversion: a higher-priority th read has to wait for a lower-
priority thread if the latter holds a lock that the former nee ds. Worse: all other threads have
to wait if a thread holding a lock stalls for whatever reason.

Despite these fundamental (logical) and operational limitations, o®ering explicit threading
functionality to the programmer is still the best way to expl oit parallelism in algorithms.
Since switching threads requires only the saving and reloading of the processor registers,
multi-threading can be supported e±ciently even on a single-core system.

5.2.7 Pthreads

All threading programming models adhere to the POSIX Threads standard (Pthreads). This
C API (Application Programming Interface) was originally d eveloped as part of the POSIX
Unix standard (Portable Operating System Interface) (POSIX 1003.1c), but is also available
on other platforms. After including the pthread.h header, functions can be called to be
executed in a newly created thread (create). At a later point in its execution °ow, the caller
(or another part of the program) can wait (join) for a thread to complete (exit).

To prevent race conditions, mutexes can be associated with shared datastructures. This
allows a thread to set (lock , trylock) and unset (unlock) a lock before and after executing
a critical section of its code. Note that a mutex is just a °ag; it is associated with a certain
resource by the programmer (by convention), for all threadsto follow. Functions e®ectively
protecting all possibly shared resources are called thread-safe.

Threads can also synchronize with each other using condition variables (init , destroy).
A thread can wait for a condition variable to become true (wait , timedwait). It continues
after the variable is set (or a certain time has passed) by another thread (signal , broadcast).
Since condition variables are shared by de¯nition, a mutex has to be used by the caller and
the callee.

5.3 Functional Programming

Functional programming languages are purely based on the evaluation of expressions (and ex-
pressions combined into functions), instead of the execution of commands. These languages

CHAPTER 5. PROGRAMMING MODELS 49

are an implementation of the computational model of lambda functions (lambda calculus).
Since these functions do not support the concept of program state and data | just param-
eters | the functional programming model in its pure form is s tateless (in contrast to the
classic, imperative model, where a global state is maintained and continuously altered). That
means that every function will always return the same value,each time it is evaluated using
the same parameters (referential transparency).

5.3.1 Functional Programming Languages

The most used functional programming languages are Erlang,Haskell, and Scheme (a dialect
of Lisp). Similar concepts are supported in other, imperative languages by using function
pointers (allowing to pass functions around as parameters), functional libraries (like FC++
for C++), and lambda functions (functions that are guarante ed to have no side-e®ects).

Allowing functions as parameters and even being able to havethem changed in the pro-
gram itself, can be extended to support higher-order functions: the mathematical concept of
functions operating on functions. Using functions as parameters or simply generating new
program code (metaprogramming) still ¯ts the Harvard archit ecture where instructions and
data are strictly separated (in contrast to the more permissive Von Neumann architecture).
When a program starts to dynamically change its own functions, it no longer adheres to what
are regarded as proper programming models. Furthermore, itno longer maps naturally onto
current processor architectures (separating their instruction and data paths).

Functional languages are notoriously well-suited to specify recursive algorithms. In a
purely functional language, other ways to control the °ow of the execution are not even
available. That makes them elegant from a mathematical point of view. However, in general,
functional languages are less e±cient in their execution compared to imperative languages.
For example, an iterative loop in an imperative language does not require all the overhead
of the recursive function calls in a functional language. For each call creates a new frame
(parameters and return address) on the stack.

Part of this overhead can be avoided by using tail recursion,which can be be executed in
constant memory space. For if the return value requires no further processing, the compiler
can avoid creating a new frame entry on the stack.

Since lambda functions can be evaluated as soon as their parameters are known, basically
forming a tree of function calls, functional programs can beparallelized automatically. Fur-
thermore, if their return value is not needed, there is no need to evaluate functions that have
no side-e®ects. For example, the remaining of an expression often can logically be skipped
after part of it has been evaluated. The same is true for expressions as parameters. In a
non-strict functional language, parameters are evaluated only when needed. All these prop-
erties make functional languages very well-suited for automatically asynchronous and parallel
processing.

5.4 Clusters

5.4.1 Intel Cluster Ready program

The Intel Cluster Ready program (ICR) [87] was introduced three years ago [85]. It is aimed
at hardware and software vendors in the low-end and mid-range cluster market. To get
certi¯ed, systems have to ful¯ll a minimum set of cluster-specī c requirements. This way,

CHAPTER 5. PROGRAMMING MODELS 50

vendors of parallel software can build their applications on a basic cluster platform, trusting
certain components to be present. Other drivers, librariesand tools will have to be provided
by the software vendor or its partners, or by a system integrator.

The nodes of an ICR cluster are based on Xeon server processors and PC hardware, in-
terconnected through Ethernet or In¯niBand. The operating system is a Linux distribution
conforming to a speci¯c ¯le system layout. Also included are Intel's closed source but pub-
licly available parallel libraries: MPI (Message Passing Interface), TBB (Threading Building
Blocks), and MKL (Math Kernel Library).

Intel only speci¯es the requirements a cluster has to ful¯ll to get certi¯ed. The speci¯c
implementation is the responsibility of the platform vendor. Intel's Cluster Checker [86] is
the tool used to check the systems compliance. It is not only deployed by the vendor, the
integrator and the end user to verify the system, it can also be used to troubleshoot an
operational cluster.

While cluster hardware gets certi¯ed, software can be registered as well. Intel provides a
minimal cluster infrastructure where software vendors canrun their package, test scripts and
test data. After successful completion, the application gets registered as being ICR compliant.
The Cluster Ready program is free for both hardware and software vendors.

AMD-Based Clusters [sidebar]

Although the Cluster Ready program is aimed at systems builton Intel's Xeon processors, the
Cluster Checker can also be used to verify an AMD-based system. Intel's parallel libraries
run on AMD hardware with the same performance and are fully supported by Intel. Ac-
cording to Werner Krotz-Vogel [118], Technical Marketing Engineer at Intel's Cluster Ready
team, the Math Kernel Library (MKL) runs even faster than the open source library AT-
LAS (Automatically Tuned Linear Algebra Software) on an AMD Opteron system. \Only
diagnostics and pro¯ling tools relying on Intel-speci¯c processor registers can not be used on
an AMD platform. However, AMD-based clusters built according to our ICR speci¯cation
can be veri¯ed using the Cluster Checker. Of course, they can not be certi¯ed; it's an Intel
program."

High-Performance Technical Computing (HPTC)

The ICR program does not primarily include the high-end clusters used for scienti¯c calcu-
lations at universities and research institutes. It aims to commoditize the parallel systems
used for industrial and commercial applications. According to IDC [84], more than half of the
servers currently sold for technical applications is deployed as part of a cluster. For exam-
ple, these systems are used for industrial computations, ¯nancial analyses, and modelling in
engineering. In the near future, IDC expects clustered systems to responsible for more than
three quarters of the HPTC market (High-Performance Technical Computing).

However, Intel is currently expanding its Cluster ready program, both at the top and at the
bottom of its market. The next version of the Cluster Checker will support clusters having
more than one head node. According to Werner Krotz-Vogel [118], Technical Marketing
Engineer at Intel's Cluster Ready team, the ¯rst ICR certi¯ed s ystems will enter the Top500
of the fastest computers in the world this year.

At the bottom end of the market, the Cluster Checker will support trivial clusters con-
sisting of only a single node. According to Krotz-Vogel, end users are asking for a tool to

CHAPTER 5. PROGRAMMING MODELS 51

verify the software stack of sequential systems (e.g. vertically scalable systems running Java
applications). Another new feature will be the support of parallel ¯le systems.

Chapter 6

Programming Languages

6.1 Introduction

Recently, the inventors of the C++ and Java programming languages, Bjarne Stroustrup and
James Gosling, respectively, have both expressed their concern on the programmability of the
new many-core processors.

According to Evans Data [33], 47 percent of all developers iscurrently using Java. Number
two is C/C++ with a user base of 41 percent.

6.2 C++0x

Most likely by the end of 2011, the ISO (International Organization for Standardization) will
o±cially publish the next version of the C++ programming lang uage speci¯cation. The new
standard [16] is currently known as C++0x, showing that this update was originally supposed
to be completed by the end of 2009 at the latest.

Next to other improvements of and extensions to the core language and the standard
library, threads and lambda functions will become part of C++. This way, the programming
language adheres to the current trend towards metaprogramming and the parallelization
of software, driven by the move from ever increasing clock speeds to many-core processor
architectures. While developers used to get a performance increase for free with every new
generation of processors, this no longer holds true. Using threads and lambda functions,
programmers will have to explicitly exploit the available parallelism.

Lambda functions will become part of the C++ core. Threads will be added to the
standard library. These extensions will be the default facilities for programmers to gain
parallel performance from multi-core and many-core processors.

6.3 Java

Whether the new extensions will be su±cient to help C++ surviv e another decade, remains to
be seen. For, since its introduction in 1995, Java has made huge inroads into the programming
world, surpassing C/C++ as the most popular language.

52

CHAPTER 6. PROGRAMMING LANGUAGES 53

Despite its fundamentally di®erent execution model (interpretation of byte code instead
of compilation and native execution), Java seems to be better prepared for the many-core
era, supporting both implicit and explicit threads.

However, according to Paul Klint [117], head of the SoftwareEngineering department at
the Center for Mathematics and Computer Science (CWI, Amsterdam), the thread model in
general and the Java model in particular are not working in actual practice. The synchro-
nization of threads has proven to be a di±cult balancing problem. For, when running several
threads, these parallel execution streams have to meet again (join) at a later point. \When
you are playing for safety, the algorithm will not work. When you do not, the synchronization
fails. This kind of models that have the programmer code his parallel software in an explicit
way, are a dead-end street; they are too complex."

According to Klint, the same goes for the memory model of Java. \It does support several
processes running in parallel, but that has all sorts of complicated consequences. The model is
too complex, so even relatively simple, little programs cantake the programmer by surpise."

6.4 Automatic Parallelization

Unfortunately, despite the apparent need for implicit parallelism, automatic parallelization
has proven to be a hard nut to crack. Computer scientists havebeen working on that for
decades now, without this leading to a general solution. Klint even calls it the holy grail of
informatics. \It would be fair to say that this quest has fail ed. That is why we no longer
focus on the general problem, but look for areas where a localsolution can be found." He
mentions Fourier transforms as an example.

That relates to the way Herbert Cornelius, Engineering Manager at Intel's Advanced
Computing Center (ACC) EMEA, characterized this problem ar ea [25]: At the highest level,
for example in the user interface, parallel programming explicitly using threads is no problem.
This is also true for the lowest level. Parallel libraries, for example to perform Fourier trans-
forms, are made readily available by the processor manufacturers. It is the bulk in between
that causes all these troubles.

By now, computer scientists have placed their hopes on new programming languages
supporting implicit parallelism. That way, software developers will be forced to formulate
their algorithms in such a way that makes it a lot easier for the compiler to generate parallel
executables from it. That has also led to a renewed interest in an older language like Erlang.
But also completely new programming languages and extensions to existing languages are
being developed. For example X10 by IBM, Fortress by Sun, Go by Google, and Ct by Intel
(see section 6.5).

6.5 Intel Ct: C/C++ for Throughput Computing

To help programmers parallelizing their code, Intel is working on Ct, short for C/C++ for
Throughput Computing [88]. This implicit parallel extensi on to C/C++ is part of the Tera-
scale Computing research program [107].

The main goal of Ct is to allow programmers to specify parallelism in their datastructures
and algorithms in a more natural way. The extension o®ers themadditional constructs to
exploit many parallel threads, vector instructions (SIMD i nstruction set extensions like SSE,

CHAPTER 6. PROGRAMMING LANGUAGES 54

Streaming SIMD Extensions), and even GPGPU instruction sets (General-Purpose Comput-
ing on GPU) [90]. Ct promises to be an easy to use, native extension to the current C/C++
language.

6.5.1 Throughput Vectors

According to Intel [88], parallel datastructures will be an important part of software architec-
tures running thousands of threads. For their creation will be driven by vectors, hierarchies,
hash tables et cetera, generally called collections. Heterogenous threads, often found at the
higher levels of a software application, require more °exible datastructures.

Ct o®ers all sorts of new parallel datastructures. Next to theexisting arrays, so-called
TVECs (Throughput Vectors) can be deployed. These can contain sparse matrixes and
associative arrays, or tree-like structures like this one (nested data parallel):

[[1; 3]; 6; [2; 4; 7]]

On the TVECs various operations have been de¯ned, working implicitly in parallel on
the whole vector. This could a matrix multiplication or the a dding of two matrixes. Other
operators can ¯nd the maximum of a vector, or rotate or add the elements. Programmers
can write their own extensions to these datastructures and accompanying operators (function
overloading). That way, the software code stays readable and intuitive.

All operators on the Throughput Vectors are implicitly para llel, and can result in another
Througput Vector (e.g. when adding or multiplying two matri ces), a single scalar (e.g. the
maximum value of a vector), or a permutation (e.g. a rotated or an ordered vector). To
keep a strict separation between native C/C++ data and Ct dat a, operations on Throughput
Vectors always return another Throughput Vector.

Operations on the Througput Vectors can be parallelized by the compiler in various ways.
Depending on the structure and the datastructures lying underneath, the code can be trans-
lated into SSE vector instructions (see section 2.18) and threads or the much smaller ¯bers.

Operations that work on separate elements of a vector, requiring no interactions between
the computations (e.g. adding two matrices), can be heavilyoptimized by the compiler (em-
barrassingly parallel) [90]. Another example are maps, applying a given function (given as a
parameter) to each element of a collection.

By contrast, collective communication operators do require interactions between the com-
putations. However, the computations can be arranged so that performance scales linearly
with the number of cores [90]. Finding the maximum of a vectoris an example of a reduction,
returning a single scalar value. Computing a pre¯x-sum (an incremental summation) is an
example of a scan, returning a value for each element of the input vector.

Permutations, moving elements around in a vector (e.g. rotating or ordering a vector),
may be parallelized in software or in hardware, depending onavailable parallelism hardware
support. That is why Intel recommends using the built-in prim itives for these operations.

6.5.2 Futures

While complex, composite and irregular operations on Througput Vectors are an implicit way
of specifying a graph of interdependent tasks, parallel tasks can also be de¯ned as more explicit

CHAPTER 6. PROGRAMMING LANGUAGES 55

functions. Futures1 are functions or smaller fragments of code together with a speci¯cation of
the parameters they require and their output. By administrating all of their interdependencies
and building a complete tree representing these, futures can be parallelized as threads.

The big advantage of Throughput Vectors and futures is that Ct uses these to capture
parallelism implicitly in the programming model. That take s some work o® the programmer
who until now had to code most of the threads and their mutual synchronization explicitly
by hand.

As a result, Ct o®ers a constrained and thus deterministic parallel programming model,
avoiding the race condition and deadlock problems of explicit threads (see section 5.2.4).

6.5.3 JIT Compiler

The Ct compiler consists of the Ct API (Application Programm ing Interface), an application
library, and a run-time engine (see ¯gure 6.1). The latter is loaded when the Ct library is
initialized. The libraries contain calls to the Dynamic Engine and can be compiled using an
ordinary C compiler. In this ¯rst step, the Ct code is translat ed into an intermediate form
that is still independent of the processor that eventually will be running the code.

Figure 6.1: The Ct API in the software development process. [Intel]

The Virtual Intel Platform (VIP) is based on the instruction sets for the x86 and Itanium
processors. The most important di®erence from real machine code for a speci¯c processor
is that vector instructions are speci¯ed in a form independent of the exact implementation.
That way, future extensions of the vector instructions can be supported. For example, Intel
is currently working on the implementation of the Advanced Vector Extensions (AVE), while
AMD will be implementing CVT16, FMA3/FMA4, and XOP (all part of the SSE5 instruction
set extension).

Eventually, the VIP code will be executed by a JIT compiler (Just-In-Time) and a
Threaded Run-Time (TRT), together with the Memory Manager in tegrated into the Dy-
namic Engine. The VIP Code Generator makes sure that, depending on the target platform,

1Futures are functions that do not change anything in the outer scope whi le calculating their return values.
A future can be parallelized and spawned asynchronously as soon as its parameters are available, even before
the return value is actually needed.

CHAPTER 6. PROGRAMMING LANGUAGES 56

the correct SSE libraries and functions will be selected.
Heavy compiler optimizations ensure that the thread and vector granularity ¯t the parallel

capabilities of the computer system. The values of the Throughput Vectors are stored on a
separate heap, managed by the Ct garbage collector running in the background. Ct code
can be executed asynchronously by the run-time; synchronization takes place when explicitly
moving back and forth data between native C/C++ memory and Ct Throughput Vectors.
Since only Ct operators can work on the isolated Throughput Vectors, aggressive parallel
optimizations can be made [90].

6.5.4 Forward Scaling

Just as important as the portability of the vector (SSE) inst ructions is the scalability in
the number of threads supported by the hardware. For, you cannot have the code that is
currently being writing for a limited number of threads adju sted for tens of threads later on,
and again for hundreds of threads, and then again for thousands of threads.

By making the Ct programming language and the VIP code independent of the speci¯c
hardware substrate, programs now being written and compiled can be executed on a larger
topology in two years time. Then the code would automatically spread over the available
hardware resources. This concept is called forward scalingby Intel.

6.5.5 Availability

Ct is currently in alpha stage. \Some selected customers areusing it now and providing
feedback," says Herbert Cornelius [25], director of Intel's Parallel Application Center. \So
we can improve it according to their needs and experiences. At one time it will enter into
beta stage, when it will be made available to a larger community. That is also when the
language speci¯cation will be published. It is currently being reviewed, to make it as robust
and complete as possible."

The Ct language will probably be made available on the What-If website [111]. \That is
our portal for experimental software that is not yet a product and for which we want to get
feedback from the developers community."

\On the What-If site you can currently ¯nd some other software r elated to parallel com-
puting as well. For example, the STM Compiler [106], that includes some Ct extensions for
C."

6.5.6 Performance Penalty

The Ct concept bears a strong resemblance to a parallel variant of Java, be it for C++. The
most interesting part is that Intel stayed close to the x86 and Itanium ISAs (Instruction Set
Architectures) when designing the VIP code. Since the execution requires less preprocessing,
Ct will probably not come with the performance penalty Java is bringing. Furthermore, Intel
took the opportunity to steer its Itanium processors a littl e closer to the x86 roadmaps.

Whether Ct will indeed bring us what it takes to keep multi-cor e processors busy using
general-purpose workloads remains to be seen. If the programs contain only a little paral-
lelism, running several processes at the same time and virtualization will be the only ways
to exploit a many-core system. However, the very same independence between the processes
and the virtual machines that makes it so easy to run these in parallel, cause bottlenecks to
the critical sections of the operating system and to main memory.

CHAPTER 6. PROGRAMMING LANGUAGES 57

More information on the Intel Tera-scale project can be foundat:

² http://techresearch.intel.com/articles/Tera-Scale/1 421.htm

Chapter 7

AI-Related Projects

The brain and brain processes are parallel by nature. That iswhy the connectionistic
approach, based on the biological model, working with networks of interconnected units, re-
quires massive parallel computing. GPGPU (General-PurposeComputing on GPU) performs
especially well when it comes to executing the same small operation at the same time on all
elements of a large matrix, with limited communications between the elements. That means
that for some algorithms GPUs might very well prove to be a better hardware platform than
traditional parallel systems (i.e. multi-threaded SMP systems (Symmetric Multi-Processing),
clusters, or distributed systems), especially if the computation maps natively onto the GPU
architecture and additional optimizations can be made [13,125].

In this chapter, we present some projects related to Arti¯cial Intelligene (AI), and the
speedups that were found in research.

7.1 Applications

The bulk of the GPGPU projects that have been implemented over the recent years consists
of traditional HPC (High-Performance Computing) and HPTC (H igh-Performance Technical
Computing) applications from science and business [167, 41]:

² calculations and modeling in mathmatics, computer science, physics, chemistry, and
bioinformatics, [42]

² physics engines (games),

² image [42] and video processing,

² visualization,

² raytracing,

² Fast Fourier Transform (FFT),

² Analog and Digital Signal Processing (DSP),

² designing and modeling in science and engineering,

² Monte Carlo simulations in engineering and ¯nance, [42]

58

CHAPTER 7. AI-RELATED PROJECTS 59

² weather forecasting and climate research,

² cryptography, cryptanalysis, and computer security, [43]

² databases.

When it comes to GPGPU projects in AI speci¯cally, applicatio ns can be found in:

² neural networks, machine learning [12, 123, 46, 29, 122, 32,150, 150],

² computer vision [115, 114],

² speach recognition.

7.2 GNeuron

The GNeuron project (formerly GBackpropagator) provides aneural network with backprop-
agation based learning [39]. It is based on Microsoft's Research Accelerator [126, 127], a
software toolkit built on DirectX version 9, facilitating G PGPU programming for C#/.NET
developers. It was rendered super°uous by the release of DirectCompute as part of DirectX
version 11. The latest update to the GNeuron project was in 2007; the website seems aban-
doned now.

7.3 GPU4Vision

GPU4Vision is a research program of the Institute for Computer Graphics and Vision (ICG)
at the Graz University of Technology, Austria [53]. It is sponsored by the Austrian Research
Promotion Agency as part of the VM-GPU project. The group \add resses both computer
vision and computer graphics, and is carefully nurturing a culture of digital visual informa-
tion processing to resolve the arti¯cial boundaries betweencomputer graphics and computer
vision. The research at ICG is focused on the following topics: computer graphics, medi-
cal computer vision, object recognition, object reconstruction, robotics, virtual reality and
augmented reality."

Over the last three years, this institute has produced an impresssive amount of research
papers, most of which discuss software projects implemented on a GPU:

² Total Generalized Variation (Bredies e.a., 2010) [54],

² An introduction to Total Variation for Image Analysis (Cham bolle e.a., 2009) [55],

² Fast reduction of undersampling artifacts in radial MR angiography with 3D total vari-
ation on graphics hardware (Knoll e.a., 2008) [56],

² Global Solutions Of Variational Models with Convex Regularization (Pock e.a., 2010) [57],

² An Algorithm for Minimizing the Mumford-Shah Functional (Po ck e.a., 2009) [58],

² A Convex Formulation of Continuous Multi-Label Problems (Po ck e.a., 2009) [59],

² A Convex Relaxation Approach for Computing Minimal Partiti ons (Pock e.a., 2009) [60],

CHAPTER 7. AI-RELATED PROJECTS 60

² Fast Total Variation for Computer Vision (Pock, 2008) [61],

² Mumford-Shah Meets Stereo: Integration of Weak Depth Hypotheses (Pock e.a., 2007) [62],

² Real-time Computation of Variational Methods on Graphics Hardware (Pock e.a., 2007) [63],

² Semi Automatic Segmentation of Articular Cartilage using Variational Methods (Rein-
bacher, 2009) [65],

² Interactive Texture Segmentation using Random Forests andTotal Variation (Santner
e.a., 2010) [66],

² FlowGames (Santner e.a., 2010) [67],

² PROST: Parallel Robust Online Simple Tracking (Santner e.a., 2010) [68],

² Local, Semi-global, and Global Optimization for Motion Esti mation (Trobin, 2009) [69],

² A Variational Approach to Semiautomatic Generation of Digi tal Terrain Models (Unger
e.a., 2009) [70],

² Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV
(Unger e.a., 2009) [71],

² Continuous Globally Optimal Image Segmentation with Local Constraints (Unger e.a.,
2008) [72],

² Structure- and Motion-Adaptive Regularization for High Acc uracy Optic Flow (Wedel
e.a., 2009) [73],

² Motion Estimation with Non-Local Total Variation Regulariz ation (Werlberger e.a.,
2010) [74],

² Anisotropic Huber-L1 Optical Flow (Werlberger e.a., 2009) [75],

² A Variational Model for Interactive Shape Prior Segmentation and Real-Time Tracking
(Werlberger e.a., 2009) [76],

² Globally Optimal TV-L Shape Prior Segmentation (Werlberger , 2008) [77],

² A Globally Optimal Algorithm for Robust TV-L Range Image Inte gration (Zach e.a.,
2007) [78],

² A Duality Based Approach for Realtime TV-L Optical Flow (Zach e.a., 2007) [79].

The ICG utilizes Tesla GPUs as the engine for their image processing and analyses. Hard-
ware manufacturer nVidia sponsors the research by supplying the institute with the latest
graphics adapters and support.

According to these papers, the e®ort of the GPU implementation is in the mapping of
existing algorithms onto the graphics hardware, and in the development of new parallel al-
gorithms. This speci¯c area of research brings the advantageof already having the images
available in the GPU [70]. However, in general, the complexity of the algorithms increases.
For example, since GPUs o®er limited bandwidth compared to their processing power (see
¯gure 7.1), it might very well be more e±cient to add extra calcu lations to the algorithm to
avoid memory transfers.

CHAPTER 7. AI-RELATED PROJECTS 61

Figure 7.1: Computing power (in GFLOPS) and memory bandwidth (in GB/s) for various
nVidia GPUs, with the year of market introduction [ICG [61]]

7.3.1 Performance

The ICG has reported some impressive speedups, in line with general expectations saying
that performance gains up to two orders of magnitude can be realized utilizing GPGPU. For
implementations on the CUDA platform compared to tradition al C/C++ programs [57, 79],
speedups of 30 [58, 59, 60], 80 [73], 100 [67], and 200{300 [56] have been reported.

The ICG has also compared some of their CUDA implementationsto software built on
Matlab [54, 75], ¯nding that the former vastly outperforms th e latter [74]. Speedups of
200 [55, 63] or even 1000 [61] have been reported.

Other publications report CUDA implementations now allowi ng applications to run in
real-time [67, 68, 69, 70, 72, 76, 77] or providing interactive visualization [66, 70].

Software developed as part of the GPU4Vision research program is available for download
on the ICG website [53].

7.4 AccelerEyes Jacket [sidebar]

Jacket is a software product family sold by AccelerEyes [1] to open up the parallel processing
power of GPUs to developers of HPC applications. It is built on top of nVidia's CUDA
platform and integrates into Matlab. The Jacket software development environment provides
not only an API (Application Programming Interface) for dou ble-precision calculations in
math, statistics and numerical computation but also a way to directly integrate CUDA code
into the application.

With the Jacket product suite AccelerEyes aims to replace functions available in Matlab
and its toolboxes by GPU-based siblings. Using Jacket, existing Matlab code can be accel-
erated by running it on a (multi-)GPU system. The Jacket Matla b Compiler allows you to
generate native executables.

CHAPTER 7. AI-RELATED PROJECTS 62

Among the cases currently online there are no projects speci¯cally related to arti¯cial
intelligence. However, AccelerEyes does provide an example of a multi-layer perceptron neural
network.

Jacket is available for Linux, Windows and MacOS X. Licencing prices vary depending on
the number of graphics adapters and the type of customer.

Figure 7.2: AccelerEyes Jacket product family. [AccelerEyes]

7.4.1 Matlab Parallel Computing Toolbox

Although The MathWorks themselves do not provide GPGPU functionality, Matlab does
support many-core processors and SMP con¯gurations through the Parallel Computing Tool-
box [124]. According to The MathWorks, high-level parallel processing constructs such as
parallel for-loops, distributed arrays, parallel numerical algorithms, and message passing func-
tions allow existing Matlab applications to be parallelized without too much rework to be
done. Currently, eight parallel workers are supported.

7.4.2 GPUmat and GPULib

The GP-you Group [44] provides another solution to integratenVidia's CUDA GPGPU plat-
form into Matlab. They have made the GPUmat library availabl e as freeware for registered
users.

Finally, there is GPULib by Tech-X Corporation, specialized in development of parallel
and distributed software for scienti¯c modeling [157]. Just like Jacket and GPUmat, GPULib
is built on nVidia's CUDA platform. It provides bindings for Matlab and IDL (Interactive
Data Language).

CHAPTER 7. AI-RELATED PROJECTS 63

An evaluation version of GPULib can be downloaded from the website for free. A com-
mercial license can be obtained for $495 per seat.

7.4.3 Evaluation

Bouchez recently published a research report on the integration of GPGPU and Matlab [14].
He looked into the application of MEX ¯les (Matlab Executable s), Jacket, GPUmat, and
GPULib. According to his ¯ndings, the number of supported functions is much bigger in
Jacket than in GPUmat. And GPUmat in its turn is more mature th an GPULib.

However, this technology in general proved not mature enough to be used e®ortlessly by
the average user. Furthmermore, Bouchez states that implementing CUDA versions of every
Matlab function is not enough. He suggests to provide generic versions of the functions, that
can be tailored to the particular needs of a program.

7.5 Evolved Machines

According to their website [34], Evolved Machines uses GPGPU [35] to implement an elec-
trically active and self-regulating neural fabric1. Instead of the network models traditionally
used in arti¯cial intelligence, local mechanisms discovered by neuroscience are built into the
neurons.

For example, they simulate the growth of a mesh of neurons andtheir innervating axons
in a three-dimensional space, just like biological neural systems do. The result is an array of
neurons that can perform sensory functions.

One of the networks created by Evolved Machines implements an olfactory sensory pro-
cessing system. Sensor data from 100 distinct volatile organic compounds is recoded in an
array of 1000 neurons, each having 30 nonlinear branches. The resulting neural representa-
tions are then read out by a ¯nal array of readout units, the sensory patterns reliably being
discriminated. The system e®ectively performs a transformation orthogonalizing the overlap
between the raw sensory vectors. This process depends both on the branching structure of the
neural units and the local nonlinear mechanisms. The technology is o®ered in a commercial
product line by partner iSense [113]. The company o®ers, for example, scanners for military
applications, water monitoring and container monitoring.

The next step is the development of a cortical visual object recognition system. This will
not be based on a computing algorithm but on triggering the right representational neuron
in a cascaded feed-forward network. Only that way response times comparable to those of
the biological counterpart can be met. According to EvolvedMachines, the key of invariant
object recognition is in the wiring. Accordingly, their system is based on the self-organization
of wiring patterns in a cascade of arrays of neurons. Like in biological neural circuits, the
neurons wire themselves to both internal guidance during development and sensory input
thereafter.

1Last year, Evolved Machines installed a 10,800-core parallel computing facility dedicated to the devel-
opment of arti¯cial neural circuits. The system incorporates 42 nVidia Tesla GPU computing processors,
controlled by 14 quad-core AMD Phenom conventional microprocessors, and has a nominal computation ca-
pacity of over 40 TFLOPS.

CHAPTER 7. AI-RELATED PROJECTS 64

7.6 Comparing Biologically Inspired Visual Models

Figure 7.3: This supercomputer was built
as part of a collaboration between the
Cox Lab (Rowland Institute at Harvard)
and the DiCarlo Lab (McGovern Insti-
tute for Brain Research at MIT). It con-
tains sixteen GPUs (eight nVidia 9800GX2
cards) and has a theoretical performance of
8 TFLOPS (4 TFLOPS observed). Apart
from the graphics adapters which were do-
nated by nVidia, the hardware costs were
less than $3,000. [PLoS/MIT]

Last year, researchers from the McGovern Insti-
tute for Brain Research at MIT (Massachusetts
Institute of Technology) and the Rowland Insti-
tute at Harvard University reported to have built
an arti¯cial visual computing system based on
nVidia Tesla GPUs, using the CUDA toolkit and
PyCUDA [151], and PlayStation 3 systems [131].
Rationale behind the con¯guration is that highly
parallel graphics processing hardware like this
has disrupted the traditional developments in
performance (based on Moore's Law, see sec-
tion ??) for some classes of computational prob-
lems. Speci¯cally for some of the key computa-
tions that most biologically inspired visual mod-
els share in common, hundred-fold speedups are
reported.

The computers were used to test and com-
pare biologically inspired visual models, very
much like the large-scale high-throughput screen-
ing approaches in molecular biology and genetics.
For this purpose, thousands of potential network
architectures and parameter instantiations were
automatically generated and trained. The most
promising were selected for further analysis.

Speedups of two of even three orders of mag-
nitude were reported (see ¯gure 7.4). The data (7,500 di®erentmodels) took approximately
one week to generate using the PlayStation 3 based implementation on a cluster of 23 ma-
chines. The researchers estimate that producing the same results at the same cost using a
conventional Matlab implementation would have taken more than two years.

Figure 7.4: Performance and cost of various CPU and GPU implementations for a key ¯ltering
operation in a biologically inspired visual model. [PLoS/MIT [131]]

CHAPTER 7. AI-RELATED PROJECTS 65

Like with the GPU4Vision program (see section 7.3), nVidia provided hardware and sup-
port for this project. Furthermore, the company is contribu ting to a $50,000 Ph.D. position.

7.7 OpenVidia

OpenVidia is an open source software project consisting of several computer vision algorithms
running on graphics hardware, aiming to provide real-time computer vision and imaging using
less power [37, 148].

The software is built using OpenGL, Cg, and more recently CUDA. Key part is the
CUDA Vision Workbench (CVWB), a collection of common image processing routines. Other
projects o®er algorithms for stereo vision, optical °ow and feature tracking.

7.8 MinGPU

MinGPU is a library providing base functions for GPGPU. It is implemented using OpenGL
and works for nVidia and ATI graphics adapters. The library h ides all interaction with the
GPU from the users, providing a basic building block for any GPGPU application.

The developers of MinGPU implemented three popular computer vision methods, and
found a speedup of 600 compared to a CPU-based implementationfor 'homography transfor-
mations' (resulting in a speedup of 7500 compared to a Matlab-based implementation) [10].

7.9 Other Research Projects

AI-related research projects can hardly be found through gpgpu.org2 [41]. Despite it being
the central online repository on GPGPU, we only found Evolved Machines (see section 7.5)
and `Visual Representation' (see section 7.6) when searching for words like neuron, neurons,
neuronal, neural, and arti¯cial intelligence.

Also, in nVidia's list of CUDA-Accelerated Applications, th ere are no other applications
speci¯c to AI.

In this case, Google, the portals of IEEE (Institute of Electrical and Electronics Engi-
neers), ACM (Association for Computing Machinery), Springer and other publishers of scien-
ti¯c papers, and the references lists of papers already found, proved to be a better entrance.

7.9.1 Speedups

Researchers speci¯cally working on neural networks report speedups of 2{24 [156], 8{17 [47],
20 [120], 20{50 [123], 40 [155], 80 [159], 50{150 [46], and 100 [121]. For vision related projects,
speedups of 20 [40], 28 [147], and 600 [10] are reported.

7.9.2 CUDA Courses

Currenty, CUDA courses are given at hundreds of universities all over the world [145]. In the
Netherlands, CUDA programming is teached at the Delft University of Technology and at
the University of Amsterdam.

2gpgpu.org is the central online repository on GPGPU. It was founded by Mar k J. Harris, who also coined
the term GPGPU for General-Purpose computing on Graphics Processing Units.

CHAPTER 7. AI-RELATED PROJECTS 66

A dozen of those universities are recognized by nVidia as CUDA Center of Excellence [139],
\expanding the frontier of massively parallel computing using CUDA".

Complete training material for CUDA is available online [144] from nVidia, but also from
the University of Illinois, Stanford University, and UC Dav is.

Chapter 8

Conclusion

8.1 Thread-Level Parallelism (TLP) vs. Data Parallelism

There can be no doubt on where general-purpose processors (CPUs, Central Processing Units)
are currently heading. Physical and technical limitations no longer allow manufacturers to
increase the clock speeds of their chips like they did over the last decades. Performance
improvements will have to come mainly from the higher transistor count that smaller chip
features are bringing. Since developments in Instruction-Level Parallelism (ILP) are lagging,
more parallelism is the only way to go.

How this parallelism will look like, depends on whom you are asking and what his back-
ground is (i.e. what he is currently selling). Intel believes in many-core processors, supporting
tens or hundreds of threads.

nVidia says it is already there, with their graphics processors (GPUs, Graphics Pro-
cessing Units) containing hundreds of cores and supportingthousands of mini-threads. Of
course, they are not; support for general-purpose programming, generic memory transfers,
and double-precision °oating-point operations is still poor at this moment.

The big di®erence on an architectural level is that x86 processors are CISC designs (Com-
plex Instruction Set Computer), requiring large and complex cores, while graphics processors
are SIMD machines (Single Instruction, Multiple Data), evolving around large matrices and
simple operations working on all elements in parallel.

From a programmer's perspective, CPUs o®er a multi-threaded model allowing a lot of
control °ow instructions, while GPUs o®er a rigid stream processing model putting a large
performance penalty on control °ow changes.

For the ¯rst, complexity is in the application logic. On a high level (i.e. the interface level),
parallelization is relatively simple. The same goes for thelower level, where parallel hardware
can be exploited by replacing low-level libraries. The problem is in the middle, where complex
code (i.e. the core logic) needs to be parallelized, while automatic parallelization has proven
to be unfeasable. Currently, new programming languages andextensions to current languages
are developed, supporting both explicit and implicit parallelism.

Stream processing only works for problems that contain massive parallelism with limited
communications between elements (i.e. matrices). Furthermore, the speci¯c algorithm has to
be mapped e®ectively on the available hardware.

67

CHAPTER 8. CONCLUSION 68

These limitations are generally referred to as the the programmability gap.

8.2 Future Directions

It is clear that processor manufacturers are all searching for the next hardware/software
paradigm. Sun's UltraSPARC T series gives us a good impression of what a future general-
purpose many-core processor might look like. Since it is based on a RISC (Reduced Instruction
Set Computer) rather than a CISC architecture, its cores aresmaller. However, after the
acquisition by Oracle, the future of all Sun products is unknown. Furthermore, x86 is the
de facto standard that everyone is adhering to. The traditional UNIX/RISC market that
both the UltraSPARC and Intel's Itanium architecture belon g to, is slowly but constantly
declining.

Intel's Larrabee processor sits between a general-purpose processor and a graphics proces-
sor, just like IBM's Cell processor. It embodies Intel's belief in a general-purpose many-core
architecture that can reach the same performance as a dedicated graphics processor. Unfor-
tunately, it did not, so the ¯rst product has been canceled recently.

Despite the Cell processor having no performance issues at all, its future is uncertain as
well. After the initial announcement, we never heard about IBM's mainframe plans again
(another declining market). The Cell blades were recently canceled. And even the processor
itself might be discontinued.

That leaves us with the x86 CISC architecture and the graphics processors as they cur-
rently exist. Fact is that both are and will be used in personal computer systems of all
sorts in the foreseeable future, providing commodity processing units for both thread-based
parallelism and data parallelism.

So AMD might be right after all. Their Fusion strategy brings x86 cores and GPU together
onto a single die, possibly extending it with other specialized processing engines (Accelerated
Processing Units, APUs). And Intel is hesitantly following suit.

When it comes to architectural innovations, AMD has been right before. Unfortunately,
the company is struggling, so execution might be problematic. In accordance with this line
of reasoning, nVidia is rumoured to be developing its own x86compatible processor core.

8.3 High-Performance Computing

However, for researchers requiring massive parallel computing power for their HPC applica-
tions, an integrated solution for general-purpose computing systems will not do. In these
high-end systems performance-per-Watt has become the most important design parameter.
Current commodity GPUs, and especially the way these are developing, provide a cheap com-
puting resource where the least possible number of transistors are dissipating power without
contributing to the actual computation (i.e. performance) .

For HPC applications, the integration of x86 cores and specialized processing engines is
a waste of transistors and power, especially when you want tostack these machines as high
and dense as possible.

Fortunately, there is a huge community (i.e. market) of gamers and tweakers, just like
HPC users always asking for more and more processing power, guaranteeing the continued
availability of discrete commodity GPUs1.

1According to nVidia, there are about one million GPUs sold each week [140]

CHAPTER 8. CONCLUSION 69

What we are waiting for is for graphics processors to become astandard part of the
product portfolio of manufacturers of high-end computer systems. The fact that people are
still stacking PlayStation game consoles or building their own GPU-based supercomputer
clearly shows there is a need for commercial o®erings like these.

That way, standard building blocks can be bought, for example, in a blade form factor,
together with support, training and other professional services.

8.4 The New Normal in High-Performance Computing

Calling a four or eight-way GPU machine a supercomputer will only last as long as we are in
this transition from CPU to GPU-based computer systems. As soon as this hardware becomes
available in a form everbody can deploy, the de¯nition of a supercomputer wil be adjusted
accordingly. HPC users will simply get more computing powerfor their money, acquiring
massive amounts of GPUs.

So, nVidia stating that hardware costs will no longer be the main barrier for big science, is
de¯nately exaggerating. They even call it the democratization of supercomputing. GPGPU
is de¯nately a so-called disruptive technology, allowing us to make a big leap forward instead
of just the next step. But in the end, this will just be the new n ormal in HPC.

8.5 For Arti¯cial Intelligence

So, what will GPGPU be bringing for Arti¯cial Intelligence in speci¯c? The speedup of one
or two orders of magnitude that is generally reported for all research ¯elds using HPC, is also
representative for neural networks, natively using massive parallel processing. Algorithms
in this area can easily be transformed to matrix calculations, and communications between
elements are limited. Furthermore, simulations of neural networks do not require double-
precision °oating-point operations, whose performance is lagging in current GPUs.

Computer vision is a special case, allowing for even greaterspeedups than in other areas.
For visual applications have the advantage of GPUs being speci¯cally designed for visualiza-
tions. Furthermore, most of the times, the data to be processed is already located in the
memory of the GPU.

Some researchers in this area report speedups up to three orders of magnitude. In HPC
terms this relates to the next step when DARPA (Defense Advanced Research Projects
Agency) asks companies like IBM, Cray and SGI for the development of a long-term vision
and fundamental research into the next era of HPC2 [28, 27].

Even deploying relatively small computer systems (from an HPC perspective), several
researchers in this area report now to be able to run applications in real-time or to provide
interactive visualization where this could not be done before, presenting not only a quantita-
tive but also a qualitative (fundamental) breakthrough.

For example, the way researchers at MIT (Massachusetts Institute of Technology) and the
Rowland Institute at Harvard University searched for valid biologically inspired visual models
by testing and comparing thousands of potential network architectures, was made possible by

2To put this in perspective: DARPA's ambitions for Exascale computi ng are to take seven years. However,
history has learned us that each thousandfold increase in performance hastaken well over ten years [112]. So,
it can not have been a surprise that research into Exascale computing concluded these ambitions were not
feasable [80, 28].

CHAPTER 8. CONCLUSION 70

the custom GPGPU system they have built. Before then, this research method was limited
to other scienti¯c areas.

And a company like Evolving Machines can now realize response times for a cortical visual
object recognition system that are comparable to those of the biological counterpart.

In combination with the continuing pressure on power dissipation and density, GPGPU
provides tremendous opportunities for robotics, and for related areas like the development of
intelligent portable devices or prostheses.

8.6 Maturity

At this moment, GPGPU is not yet a mature technology. Over the next years, graphics
processors will become better suited to support generic stream processing applications. Work
needs to be done in generic memory access and double-precision °oating-point operations.

Furthermore, until recently, only proprietary programmin g toolkits belonging to a speci¯c
GPU were available. nVidia's CUDA toolkit has become the de facto standard, but it is not
portable. Today, all important players in this market, i.e. AMD, IBM, Intel, and Nvidia,
are supporting Apple's OpenCL programming language. However, performance is not yet
as good as CUDA's. Furthermore, source code still contains topology-speci¯c programming,
inhibiting portability of applications over various hardw are platforms.

Despite these limitations, in the near future, OpenCL will be the standard language
for GPGPU (and possibly many-core) computing. And even when applications will not be
portable, programmers will have a single language and development platform to work with.

8.7 Jumping on the Bandwagon

As scienti¯c papers over the last ¯ve years show, GPGPU o®ers tremendous opportunities for
research. Not only does it allow you to accelerate existing algorithms, speedups up to three
orders of magnitude open up roads to qualitatively new research topics and applications.

nVidia supports various GPGPU research projects by providing hardware and support.
The company can even contribute ¯nancially to a Ph.D. position in this area.

At this moment, already hundreds of universities in the world have started CUDA courses.
Jumping on the bandwagon is very easy, as the hardware is cheap and readily available
in every standard PC, actually providing the ¯rst generation of commodity data parallel
coprocessors [149].

Bibliography

[1] AccelerEyes: Jacket
http://www.accelereyes.com/

[2] AMD press release, March 29, 2010: AMD Sets the New Standard for Price, Perfor-
mance, and Power for the Datacenter
http://www.amd.com/us/press-releases/Pages/amd-sets -the-new-standard-29mar2010.aspx

[3] AMD article, October 4, 2007: Massive Multi-Core Processors: The Gamer's Edge
http://developer.amd.com/documentation/articles/Pag es/1042007177.aspx

[4] AMD Fusion White Paper: AMD Fusion Family of APUs, Techno logy Overview
http://sites.amd.com/us/Documents/48423B_fusion_whi tepaper_WEB.pdf

[5] AMD Performance Libraries
http://developer.amd.com/cpu/Libraries/Pages/defaul t.aspx

[6] AMD press release, June 1, 2009: New Six-Core AMD Opteron Processor Delivers Up
to Thirty-Four Percent More Performance-per-Watt in Exact Sam e Platform
http://www.amd.com/us/press-releases/Pages/new_six- core_amd_opteron_processor-2009jun01.as

[7] AMD ATI Stream Technology
http://www.amd.com/UK/PRODUCTS/TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/stream-technology.as

[8] AMD Stream Computing User Guide
http://ati.amd.com/technology/streamcomputing/Strea m_Computing_User_Guide.pdf

[9] Apache HTTP Server: Multi-Processing Modules (MPMs)
http://httpd.apache.org/docs/2.2/mpm.html

[10] Pavel Babenko and Mubarak Shah: MinGPU: a minimum GPU library for computer
vision; Journal of Real-Time Image Processing, Volume 3, Number 4, December, 2008,
Pages 231{331, Springer

[11] Toru Baji, Solution Architect at nVidia: presentation Future Direction in GPU
Computing at SIGGRAPH Asia 2009, December 16, 2009
http://developer.download.nvidia.com/presentations/ 2009/SIGGRAPH/asia/7_Future_Direction_i

[12] Fabrice Bernhard and Renaud Keriven: Spiking Neurons on GPUs; Computational
Science | ICCS 2006, 6th International Conference, Reading, UK, May 28{31, 2006,
Proceedings, Part IV, Volume 3994/2006, Pages 236{243, Springer

71

BIBLIOGRAPHY 72

[13] Mohammad A. Bhuiyan, Vivek K. Pallipuram and Melissa C. Smith: Acceleration of
Spiking Neural Networks in Emerging Multi-core and GPU Archi tectures; Proceedings
of the 24th IEEE International Parallel & Distributed Proce ssing Symposium, Work-
shops and Phd Forum (IPDPS 2010)

[14] Florent Bouchez: Research Report, January 8, 2010: GPGPU and Matlab; Indian
Institute of Science, Bangalore, India

[15] Ian Buck: GPU Computing: Programming a Massively Parallel Processor; Proceedings
of the International Symposium on Code Generation and Optimization, Page 17, 2007,
IEEE

[16] ISO: Programming Languages | C++ Draft International S tandard
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/ 2010/n3092.pdf

[17] The ChipList: Intel Core 2 Duo E7xxx series processor (Wolfdale-3M)
http://www.chiplist.com/Intel_Core_2_Duo_E7xxx_seri es_processor_Wolfdale_3M/tree3f-subsec

[18] The ChipList: Intel Pentium 4 processor
http://www.chiplist.com/Intel_Pentium_4_processor/t ree3f-section--2021-/

[19] The ChipList: x86 Instruction Set Architecture (ISA)
http://www.chiplist.com/ISA/

[20] Citrix press release, October 10, 2007: Citrix Teams with HP to Accelerate Server
Virtualization Adoption
http://www.citrix.com/English/NE/news/news.asp?news ID=683298

[21] Citrix press release, March 20, 2008: Citrix Raises theBar on Integrated Server Virtu-
alization with HP
http://www.citrix.com/English/NE/news/news.asp?news ID=1339958

[22] Citrix press release, October 23, 2007: Dell and CitrixPartner to Simplify Virtualization
Technology
http://www.citrix.com/English/NE/news/news.asp?news ID=683297

[23] Citrix press release, May 7, 2008: Citrix XenServer NowFactory Integrated on Dell
PowerEdge Servers
http://www.citrix.com/English/NE/news/news.asp?news ID=1350237

[24] Computable: HP virtualisatie in de praktijk: Vragen ov er virtualisatie
http://www.computable.nl/hp_artikel.jsp?id=3162220& rubriek=3148438

[25] Interview with Herbert Cornelius, Engineering Manager at Intel's Advanced Computing
Center (ACC) EMEA, on [date]

[26] Cray CX1
http://www.cray.com/Products/CX/Systems.aspx

[27] Federal Business Opportunities, March 2, 2010: DARPA:Ubiquitous High Performance
Computing (UHPC)
https://www.fbo.gov/spg/ODA/DARPA/CMO/DARPA-BAA-10-37/listing.html

BIBLIOGRAPHY 73

[28] DARPA IPTO (Information Processing Techniques O±ce): Technical Report, Septem-
ber 28, 2008: ExaScale Computing Study: Technology Challenges in Achieving Exascale
Systems
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

[29] Christopher Edward Davis: thesis report, October 2005: Graphics Processing Unit
Computation of Neural Networks

[30] Dell partners: Dell and VMware
http://www.dell.com/vmwarenow

[31] DMTF press release, September 10, 2007: DMTF Accepts New Format for Portable
Virtual Machines from Virtualization Leaders
http://www.dmtf.org/newsroom/pr/view?item_key=3b542 cbc5e6fc9ede97b9336c29f4c342c02c4e9

[32] Ryanne Dolan and Guilherme DeSouza: GPU-based simulation of cellular neural net-
works for image processing; Proceedings of the 2009 international joint conference on
Neural Networks, Atlanta, Georgia, USA, Pages 2712{2717, 2009, IEEE

[33] Evans Data: Global Developer Population and Demographics Report 2008

[34] Evolved Machines
http://www.evolvedmachines.com/

[35] Evolved Machines: press release, March 27, 2009: Evolved Machines Announces The
Installation Of A 40 TFLOPS Neural Computation Facility, To Be Used For The Arti-
¯cial Evolution Of Neural Circuitry
http://www.evolvedmachines.com/images/news_32709.pd f

[36] Federal Business Opportunities: ...
https://www.fbo.gov/index?&s=opportunity&id=ad3a039 8435a5cef9ed4055815f5e14c

[37] James Fung and Steve Mann: OpenVidia: parallel GPU computer vision; Proceedings
of the 13th annual ACM international conference on Multimedia, Hilton, Singapore,
Pages 849{852, 2005

[38] Gartner press release, October 21, 2009: Gartner Says 16 Percent of Workloads are
Running in Virtual Machines Today
http://www.gartner.com/it/page.jsp?id=1211813

[39] GNeuron project (formerly GBackpropagator); A Stream Approach to Neural Networks
http://gneuron.freehostia.com/
http://sourceforge.net/projects/gneuron/

[40] St¶ephane Gobron, Fran cois Devillard, and Bernard Heit: Retina Simulation using Cel-
lular Automata and GPU Programming; Machine Vision and Appl ications, Volume 18,
Issue 6, November 2007, Pages 331{342, Springer

[41] GPGPU.org; General-Purpose Computation on Graphics Hardware
http://gpgpu.org/

BIBLIOGRAPHY 74

[42] Matt Pharr and Randima Fernando: GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Computation; Addison-Wesley Pro-
fessional, March 13, 2005, ISBN 0321335597
http://developer.nvidia.com/object/gpu-gems-3.html

[43] Hubert Nguyen: GPU Gems 3; Addison-Wesley Professional, August 12, 2007, ISBN
0321515269
http://developer.nvidia.com/object/gpu-gems-3.html

[44] GP-you Group: GPUmat
http://www.gp-you.org/

[45] Interview with Sumit Gupta, Senior Product Manager for nVidia's Tesla GPU Com-
puting Group, and Andrew Humber, Senior PR Manager for nVidia's Tesla & CUDA
Enterprise Products, on [date]

[46] Alexander Guzhva, Sergey Dolenko and Igor Persiantsev: Multifold Acceleration of
Neural Network Computations Using GPU; Arti¯cial Neural Net works | ICANN 2009,
19th International Conference, Limassol, Cyprus, September 14{17, 2009, Proceedings,
Part I, Volume 5768/2009, Pages 373{380, Springer

[47] Tze-Yui Ho, Ping-Man Lam and Chi-Sing Leung: Parallelization of cellular neural
networks on GPU; Pattern Recognition, Volume 41, Issue 8, August 2008, Pages 2684{
2692

[48] Interviews with Peter Hofstee, the Chief Architect for the Cell processing cores at IBM,
on [date] and [date]

[49] HP partners: HP Virtualization with VMware
http://www.hp.com/go/vmware

[50] IBM press release, February 8, 2006: New IBM Blade Computers Speed Business Data
up to Ten Times Faster
http://www-03.ibm.com/press/us/en/pressrelease/1919 8.wss

[51] IBM press release, April 26, 2007: Cell Broadband Engine
Project Aims to Supercharge IBM Mainframe for Virtual World s
http://www-03.ibm.com/press/us/en/pressrelease/2143 3.wss

[52] IBM press release, May 21, 2007: IBM Unleashes World's Fastest Chip in Powerful New
Computer
http://www-03.ibm.com/press/us/en/pressrelease/2158 0.wss

[53] GPU4Vision research project, Institute for Computer Graphics and Vision (ICG), Graz
University of Technology, Austria
http://gpu4vision.icg.tugraz.at/

[54] Kristian Bredies, Karl Kunisch, Thomas Pock: Total Generalized Variation; May 14,
2010, Accepted to SIIMS

BIBLIOGRAPHY 75

[55] A. Chambolle, V. Caselles, M. Novaga, D. Cremers and T. Pock: An introduction to
Total Variation for Image Analysis; Summer School on \Theoretical Foundations and
Numerical Methods for Sparse Recovery", 2009, Linz, Austria

[56] Florian Knoll, Markus Unger, Clemens Diwoky, Christian Clason, Thomas Pock, Rudolf
Stollberger: Fast reduction of undersampling artifacts in radial MR angiography with
3D total variation on graphics hardware; 20th Annual Int. Co nference on Magnetic
Resonance Angiography

[57] Thomas Pock, Daniel Cremers, Horst Bischof, and Antonin Chambolle: Global Solu-
tions Of Variational Models with Convex Regularization; Accepted to SIIMS

[58] Thomas Pock, Daniel Cremers, Horst Bischof, Antonin Chambolle: An Algorithm for
Minimizing the Mumford-Shah Functional; International Con ference on Computer Vi-
sion 2009

[59] Thomas Pock, Thomas Schoenemann, Gottfried Graber, Horst Bischof, and Daniel
Cremers: A Convex Formulation of Continuous Multi-Label Problems; CVPR 2009,
Miami, FL, USA

[60] Thomas Pock, Antonin Chambolle, Daniel Cremers, HorstBischof: A Convex Relax-
ation Approach for Computing Minimal Partitions; CVPR 2009, Miami, FL, USA

[61] Thomas Pock: Dissertation, January, 2008: Fast Total Variation for Computer Vision;
Institute for Computer Graphics and Vision, Graz Universit y of Technology, Austria

[62] Thomas Pock, Christopher Zach, Horst Bischof: Mumford-Shah Meets Stereo: Integra-
tion of Weak Depth Hypotheses; Conference on Computer Vision and Pattern Recog-
nition 2007

[63] Thomas Pock, Markus Grabner, and Horst Bischof: Real-Time Computation of Varia-
tional Methods on Graphics Hardware; Computer Vision Winter Workshop 2007

[64] Gustavo Poli and Jos¶e Hiroki Saito: Parallel Face Recognition Processing using Neocog-
nitron Neural Network and GPU with CUDA High Performance Arc hitecture; Face
Recognition, Milos Oravec (Editor), ISBN 978-953-307-060-5, IN-TECH, 2010

[65] Christian Reinbacher: Master's Thesis, March 2009: Semi Automatic Segmentation of
Articular Cartilage using Variational Methods; Institute for Computer Graphics and
Vision, Graz University of Technology, Austria

[66] Jakob Santner, Markus Unger, Thomas Pock, Christian Leistner, Amir Sa®ari, Horst
Bischof: Interactive Texture Segmentation using Random Forests and Total Variation;
Institute for Computer Graphics and Vision, Graz Universit y of Technology, Austria

[67] Jakob Santner, Manuel Werlberger, Thomas Mauthner, Wolfgang Paier, Horst Bischof:
FlowGames; 1st Int. Workshop on Computer Vision for Computer Games (CVCG) in
conjunction with IEEE CVPR 2010

[68] Jakob Santner, Christian Leistner, Amir Sa®ari, ThomasPock, Horst Bischof: PROST:
Parallel Robust Online Simple Tracking; CVPR 2010, San Francisco, CA

BIBLIOGRAPHY 76

[69] Werner Trobin: Dissertation, December 2009: Local, Semi-global, and Global Opti-
mization for Motion Estimation; Institute for Computer Gra phics and Vision, Graz
University of Technology, Austria

[70] Markus Unger, Thomas Pock, Markus Grabner, Andreas Klaus, and Horst Bischof: A
Variational Approach to Semiautomatic Generation of Digit al Terrain Models; 5th Int.
Symp. on Visual Computing, Las Vegas, USA

[71] Markus Unger, Thomas Mauthner, Thomas Pock, and Horst Bischof: Tracking as Seg-
mentation of Spatial-Temporal Volumes by Anisotropic Weighted TV; EMMCVPR 2009

[72] Markus Unger, Thomas Pock, and Horst Bischof: Continuous Globally Optimal Image
Segmentation with Local Constraints; Computer Vision Wint er Workshop 2008

[73] Andreas Wedel, Daniel Cremers, Thomas Pock, and Horst Bischof: Structure- and
Motion-adaptive Regularization for High Accuracy Optic Flo w; International Confer-
ence on Computer Vision 2009

[74] Manuel Werlberger, Thomas Pock, Horst Bischof: MotionEstimation with Non-Local
Total Variation Regularization; CVPR 2010, San Francisco, CA, USA

[75] Manuel Werlberger, Werner Trobin, Thomas Pock, Andreas Wedel, Daniel Cremers,
Horst Bischof: Anisotropic Huber-L Optical Flow; British Ma chine Vision Conference
2009

[76] Manuel Werlberger, Thomas Pock, Markus Unger, and Horst Bischof: A Variational
Model for Interactive Shape Prior Segmentation and Real-Time Tracking; SSVM 2009,
Voss, Norway

[77] Manuel Werlberger: Master's Thesis, May 2008: Globally Optimal TV-L Shape Prior
Segmentation; Institute for Computer Graphics and Vision, Graz University of Tech-
nology, Austria

[78] Christopher Zach, Thomas Pock, Horst Bischof: A Globally Optimal Algorithm for
Robust TV-L1 Range Image Integration; International Conference on Computer Vision
2007

[79] C. Zach, T. Pock, and H. Bischof: A Duality Based Approach for Realtime TV-L
Optical Flow; DAGM 2007

[80] IEEE Spectrum: blog Sam Moore, October 7, 2008: Exascale supercomputers: Can't
get there from here?
http://spectrum.ieee.org/tech-talk/semiconductors/d evices/exascale_supercomputers_cant_g

[81] Inpai article, December 4, 2009: 17 games test CPU multi-core support
http://en.inpai.com.cn/doc/enshowcont.asp?id=7427

[82] Intel press release, November 11, 2007: Intel's Fundamental Advance in Transistor
Design Extends Moore's Law, Computing Performance
http://www.intel.com/pressroom/archive/releases/200 7/20071111comp.htm

BIBLIOGRAPHY 77

[83] Intel Tera-scale Computing Research Project
http://techresearch.intel.com/articles/Tera-Scale/1 421.htm

[84] IDC white paper, September 2008: The Cray CX1 Supercomputer: Leveraging the
Cray Brand in the HPC Workgroup Market

[85] Intel press release, June 27, 2007: Intel Accelerates High Performance Computing Clus-
ters
http://www.intel.com/pressroom/archive/releases/200 7/20070627corp.htm

[86] Intel Software Network: About Intel Cluster Checker
http://software.intel.com/en-us/articles/intel-clus ter-checker/

[87] Intel Software Network: Intel Cluster Ready (ICR)
http://software.intel.com/en-us/cluster-ready/

[88] Intel Ct: C/C++ for Throughput Computing
http://intel.com/go/Ct

[89] Intel Technology Journal, Volume 11, Issue 04, November 15, 2007: Future-Proof Data
Parallel Algorithms and Software on Intel Multi-Core Archit ecture
http://www.intel.com/technology/itj/2007/v11i4/7-fu ture-proof/1-abstract.htm

[90] Intel white paper: Ct: A Flexible Parallel Programming Model for Tera-scale Architec-
tures
http://software.intel.com/en-us/data-parallel/

[91] Intel press release, October 25, 2007: Intel Opens First High-Volume 45nm Micropro-
cessor Manufacturing Factory
http://www.intel.com/pressroom/archive/releases/200 7/20071025corp.htm

[92] Intel Technology Journal, Volume 11, Issue 03, Augustus 22, 2007: Intel Tera-scale
Computing: Package Technology to Address the Memory Bandwidth Challenge for
Tera-scale Computing
http://www.intel.com/technology/itj/2007/v11i3/3-ba ndwidth/1-abstract.htm

[93] Intel Software Network: Intel Cluster Toolkit
http://software.intel.com/en-us/intel-cluster-toolk it/

[94] Intel Tera-scale: Hybrid Silicon Laser
http://techresearch.intel.com/articles/Tera-Scale/1 448.htm

[95] Intel Larrabee processor architecture
http://www.intel.com/technology/visual/microarch.ht m

[96] Intel Software Network: Intel Math Kernel Library (MKL)
http://software.intel.com/en-us/intel-mkl/

[97] Intel Software Network: Intel Integrated Performance Primitives (IPP)
http://software.intel.com/en-us/intel-ipp/

[98] Intel Software Network: Intel Message Checker
http://www.intel.com/cd/software/products/asmo-na/e ng/227074.htm

BIBLIOGRAPHY 78

[99] Intel Software Network: Intel MPI Library http://software.intel.com/en-us/intel-mpi-library/

[100] Intel Multi-Core Technology
http://www.intel.com/multi-core/

[101] Intel Software Network: Intel Parallel Studio for Mic rosoft Visual Studio C/C++ De-
velopershttp://software.intel.com/en-us/intel-parallel-stud io-home/

[102] Intel press release, May 26, 2009: Intel Parallel Studio helps programmers deliver mul-
ticore applications
http://www.intel.com/corporate/pressroom/emea/eng/i ps/index.htm

[103] Intel Tera-scale: Polaris research processor
http://techresearch.intel.com/articles/Tera-Scale/1 449.htm

[104] Intel Tera-scale: Silicon Photonics
http://techresearch.intel.com/articles/Tera-Scale/1 419.htm

[105] Intel press release, March 10, 2010: Intel SpotlightsNew Extreme Edition Processor,
Software Developer Resources at Game Conference
http://www.intel.com/pressroom/archive/releases/201 00310comp.htm

[106] Intel Software Network: Intel C++ STM Compiler (Softw are Transactional Memory3),
Prototype Edition 3.0
http://software.intel.com/en-us/articles/intel-c-st m-compiler-prototype-edition-20/

[107] Intel Tera-scale Computing Research Program
http://techresearch.intel.com/articles/Tera-Scale/1 421.htm

[108] Intel's Tick-Tock Model
http://www.intel.com/technology/tick-tock/

[109] Intel Software Network: Intel Trace Analyzer and Collector
http://software.intel.com/en-us/intel-trace-analyze r/

[110] Intel Software Network: Intel VTune Performance Analyzer
http://software.intel.com/en-us/intel-vtune/

[111] Intel Software Network: What If Experimental Softwar e
http://whatif.intel.com

[112] Irving Wladawsky-Berger: blog February 15, 2010: Extreme Scale Computing
http://blog.irvingwb.com/blog/2010/02/extreme-scale -computing.html
reprinted by International Science Gris This Week (ISGTW) as: Opinion | Challenges
to exascale computing
http://www.isgtw.org/?pid=1002463

[113] iSense: chemical detection technology
http://www.isensesystems.com/

3http://en.wikipedia.org/wiki/Software_transactional_memory

BIBLIOGRAPHY 79

[114] Pierre-Marc Jodoin, Max Mignotte and Jean-Fran cois St-Amour: Markovian Energy-
Based Computer Vision Algorithms on Graphics Hardware; Proceedings 13th Interna-
tional Conference, Cagliari, Italy, September 6{8, 2005, Springer; Image Analysis and
Processing | ICIAP 2005, Volume 3617/2005, Pages 592{603

[115] Hansung Kim, Ryuuki Sakamoto, Itaru Kitahara, Tomoji Toriyama and Kiyoshi
Kogure: Compensated Visual Hull with GPU-Based Optimization; Proceedings 9th Pa-
ci¯c Rim Conference on Multimedia, Tainan, Taiwan, December 9{13, 2008, Springer;
Lecture Notes in Computer Science, Volume 5353/2008, Pages573{582, Springer

[116] David B. Kirk: Computing in Crisis: Challenges and Opportunities; UIUC CSL Global
Technology Forum, 2007

[117] Interview with Paul Klint, head of the Software Engineering department at the Center
for Mathematics and Computer Science (CWI, Amsterdam), on [date]

[118] Interview with Werner Krotz-Vogel, Technical Marketi ng Engineer at Intel's Cluster
Ready team, on [date]

[119] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Dongarra: The PlayStation 3
for High Performance Scienti¯c Computing; Computing in Science and Engineering
(CISE), vol. 10, no. 3, pp. 84{87, May/June 2008

[120] Kyoung-Su Oh, Keechul Jung: GPU implementation of neural networks; Pattern Recog-
nition, Volume 37, Issue 6, Pages 1311{1314, 2004

[121] Sheetal Lahabar, Pinky Agrawal, P. J. Narayanan: HighPerformance Pattern Recog-
nition on GPU; National Conference on Computer Vision, Pattern recognition, Image
Processing and Graphics, 2008

[122] Zhongwen Luo, Hongzhi Liu and Xincai Wu: Arti¯cial Neur al Network Computation
on Graphic Process Unit; Pattern Recognition, Volume 37, Issue 6, June 2004, Pages
1311{1314

[123] Mart¶³nez-Zarzuela, F. J. D¶³az Pernas, A. Tejero de Pablos, M. Ant¶on Rodr¶³guez,
J. F. D¶³ez Higuera, D. Boto Giralda, and D. Gonzlez Ortega: Adaptative Resonance
Theory Fuzzy Networks Parallel Computation Using CUDA; Bio -Inspired Systems:
Computational and Ambient Intelligence, 10th Internation al Work-Conference on Arti-
¯cial Neural Networks, IWANN 2009, Salamanca, Spain, June 10{12, 2009, Proceedings,
Part I, Volume 5517/2009, Pages 149{156, Springer

[124] The MathWorks: Parallel Computing Toolbox for Matlab
http://www.mathworks.com/products/parallel-computin g/?s_cid=HP_FP_ML_parallelcomptbx

[125] Ryan J. Meuth and Donald C. Wunsch II: Approximate Dynamic Programming and
Neural Networks on Game Hardware; International Joint Conference on Neural Net-
works, August 2007

[126] Microsoft Research: Acceleratorhttp://research.microsoft.com/en-us/projects/Accele rator/

BIBLIOGRAPHY 80

[127] David Tarditi, Sidd Puri, Jose Oglesby: Microsoft Research TechReport: Accelera-
tor: Using Data Parallelism to Program GPUs for General-Purpose Uses; ASPLOS06
October 21{25, 2006, San Jose, California, USA

[128] Microsoft press release, October 1, 2008: Microsoft Helps Customers Overcome Barriers
to Virtualization and Get Virtual Now
http://www.microsoft.com/presspass/press/2008/oct08 /10-01HyperVRTM08PR.mspx

[129] Microsoft Virtualization Team Blog posting, July 22, 2009: Windows Server 2008 R2 &
Hyper-V Server 2008 R2 RTM!!!!
http://blogs.technet.com/virtualization/archive/200 9/07/22/windows-server-2008-r2-hyper-

[130] Phillip Miller, Director, Software Product Management, Professional Solutions Group,
at nVidia: presentation Languages, APIs and Development Tools for GPU Computing
at SIGGRAPH Asia 2009, December 2009
http://developer.download.nvidia.com/presentations/ 2009/SIGGRAPH/asia/1_CUDA-Overview.pdf

[131] Nicolas Pinto, David Doukhan, James J. DiCarlo, DavidD. Cox: A High-Throughput
Screening Approach to Discovering Good Forms of Biologically Inspired Visual Repre-
sentation; PLoS Computational Biology, November 2009, Volume 5, Issue 11

[132] NewScientist article, December 18, 2009: The US air force's holiday wish list: 2500
PlayStations
http://www.newscientist.com/article/dn18305-the-us- air-forces-holiday-wish-list-2500-play

[133] John W. Romein, P. Chris Broekema, Jan David Mol, and Rob V. van Nieuwpoort:
Processing Real-Time LOFAR Telescope Data on a Blue Gene/P Supercomputer

[134] Alexander S. van Amesfoort, Ana L. Varbanescu, Henk J.Sips, and Rob V. van
Nieuwpoort: Evaluating Multi-Core Platforms for HPC Data-In tensive Kernels; CF09,
May 18{20, 2009, Ischia, Italy

[135] Interview with Rob van Nieuwpoort, researcher at ASTRON, on [date]

[136] Rob V. van Nieuwpoort & John W. Romein: Using Many-Core Hardware to Correlate
Radio Astronomy Signals

[137] nVidia Tesla articles
http://www.nvidia.com/object/tesla_articles.html

[138] nVidia press release, November 19, 2008: nVidia and Cray to Deliver Tesla-Enabled
Cray CX1 Deskside Supercomputer
http://www.nvidia.com/object/io_1227095937833.html

[139] nVidia: CUDA Centers of Excellence
http://research.nvidia.com/content/cuda-centers-exc ellence

[140] David Luebke, nVidia: GPU Computing 3.0: The Past, Present, and Future of GPU
Computing; presentation, nVidia, October 2009

[141] nVidia High Performance Computing
http://www.nvidia.com/object/tesla_computing_soluti ons.html

BIBLIOGRAPHY 81

[142] nVidia Tesla Personal Supercomputer
http://www.nvidia.com/object/personal_supercomputin g.html

[143] nVidia: CUDA and GPU Computing Books
http://www.nvidia.com/object/cuda_books.html

[144] nVidia: CUDA Training
http://developer.nvidia.com/object/cuda_training.ht ml

[145] nVidia: CUDA University Courses
http://www.nvidia.com/object/cuda_courses_and_map.h tml

[146] nVidia: Where to Buy Tesla Personal Supercomputers
http://www.nvidia.com/object/tesla_supercomputer_wt b.html

[147] Julius Ohmer, Frederic Maire, and Ross Brown: Implementation of Kernel Methods on
the GPU; 8th International Conference on Digital Image Computing: Techniques and
Applications (DICTA), December 2005, Carins, Australia

[148] OpenVidia: Parallel GPU Computer Vision
http://openvidia.sourceforge.net/

[149] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens KrÄuger, Aaron E.
Lefohn, and Timothy J. Purcell: A Survey of General-Purpose Computation on Graph-
ics Hardware; Computer Graphics Forum, Volume 26, Issue 1, Pages 80{113, March
2007; Eurographics 2005, State of the Art Reports, August 2005, pp. 21{51

[150] Gustavo Poli and Jos¶e Hiroki Saito: Parallel Face Recognition Processing using Neocog-
nitron Neural Network and GPU with CUDA High Performance Arc hitecture; Face
Recognition, Milos Oravec (Editor), ISBN 978-953-307-060-5, IN-TECH, 2010

[151] PyCUDA: nVidia CUDA API for Python
http://mathema.tician.de/software/pycuda

[152] John E. Stone, David Gohara, Guochun Shi: OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems; Computing in Science and Engineering,
vol. 12, no. 3, pp. 66{73, May/June 2010

[153] Oracle: Sun UltraSPARC T2 and T2 Plus Processors
http://www.oracle.com/us/products/servers-storage/m icroelectronics/031459.htm

[154] Super Computing 2006: GPGPU Tutorial
http://gpgpu.org/sc2006

[155] Bal¶azs Gergely So¶os,¶Ad¶am R¶ak, J¶ozsef Veres, and GyÄorgy Cserey: GPU Boosted CNN
Simulator Library for Graphical Flow-Based Programmabilit y; EURASIP Journal on
Advances in Signal Processing, Volume 2009, Article ID 930619, 11 pages

[156] Daniel Strigl, Klaus Ko°er, Stefan Podlipnig: Performance and Scalability of GPU-
Based Convolutional Neural Networks; Proceedings 18th Euromicro Conference on Par-
allel, Distributed and Network-based Processing, 2010, pp.317{324

BIBLIOGRAPHY 82

[157] Tech-X Corporation: GPULib http://www.txcorp.com/products/GPULib/

[158] Top 500 Supercomputer Sites
http://www.top500.org/

[159] Rafael Uetz and Sven Behnke: Locally-connected Hierarchical Neural Networks for
GPU-accelerated Object Recognition; Proceedings of NIPS 2009 Workshop on Large-
Scale Machine Learning: Parallelism and Massive Datasets,Whistler, Canada, Decem-
ber 2009

[160] VIA CoreFusion Processor Platform
http://www.via.com.tw/en/products/processors/corefu sion/

[161] VMware press release, September 10, 2007: VMware Unveils Next Generation Hyper-
visor to be Integrated in Server Hardware
http://www.vmware.com/company/news/releases/esx3i.h tml

[162] VMware press release, February 26, 2008: VMware Announces Agreements to Embed
VMware ESX 3i Hypervisor Across Broad Lines of Servers from Dell, Fujitsu-Siemens,
HP and IBM
http://www.vmware.com/company/news/releases/3i_roll up_vmworld.html

[163] VMware press release, February 26, 2008: Dell and VMware Delivering Virtualization
Everywhere
http://www.vmware.com/company/news/releases/dell_vm world.html

[164] VMware press release, February 26, 2008: VMware and HPAnnounce Agreement to
Embed VMware ESX 3i on HP ProLiant Servers
http://www.vmware.com/company/news/releases/hp_vmwo rld.html

[165] VMware press release, July 28, 2008: VMware ESXi Hypervisor Now Free
http://www.vmware.com/company/news/releases/esxi_pr icing.html

[166] Carl A. Waldspurger, VMware: Memory Resource Management in VMware ESX Server;
Proc. Fifth Symposium on Operating Systems Design and Implementation (OSDI '02),
Dec. 2002

[167] Wikipedia: GPGPU; General-Purpose Computing on Graphics Processing Units
http://en.wikipedia.org/wiki/GPGPU

[168] Wikipedia: Intel Bloom¯eld processors
http://en.wikipedia.org/wiki/Bloomfield_%28micropro cessor%29

[169] Wikipedia: Random-Access Memory: Memory Wall
http://en.wikipedia.org/wiki/Random_access_memory#M emory_wall

[170] Ruigang Yang: Scienti¯c Computing Using Graphics Hardware; Proceedings First Inter-
national Symposium on Computational and Information Sciences 2004 (CIS'04), Shang-
hai, China; Lecture Notes in Computer Science, ISSU 3314, pages 1100{1105, Springer

Appendix A

Publications

A.1 Publications in Dutch ICT Media

83

Appendix B

Further Reading

B.1 Multi-Core Programming

² Anthony Williams: C++ Concurrency in Action: Practical Mul tithreading; Manning,
September 2010, ISBN 1933988770

² Sergey A. Babkin: The Practice of Parallel Programming; CreateSpace, March 2010,
ISBN 1451536615

² Jorge Luis Ortega-Arjona: Patterns for Parallel Software Design; Wiley, March 2010,
ISBN 0470697342

² Thomas Rauber and Gudula RÄunger: Parallel Programming: for Multicore and Cluster
Systems; Springer, March 2010, ISBN 364204817X

² Matthew Sottile, Timothy G. Mattson, Craig E. Rasmussen: In troduction to Concur-
rency in Programming Languages; Chapman & Hall, September 2009, ISBN 1420072137

² Clay Breshears: The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel
Applications; O'Reilly, May 2009, ISBN 0596521537

² Cameron Hughes and Tracey Hughes: Professional Multicore Programming: Design
and Implementation for C++ Developers; Wrox, September 2008, ISBN 0470289627

² Maurice Herlihy and Nir Shavit: The Art of Multiprocessor Pr ogramming; Morgan
Kaufmann, March 2008, ISBN 0123705916

² Calvin Lin and Larry Snyder: Principles of Parallel Programming; Addison Wesley,
March 2008, ISBN 0321487907

² Stewart Taylor: Optimizing Applications for Multi-Core Pro cessors, Using the Intel
Integrated Performance Primitives; Intel Press, September 2007, ISBN 1934053015

² James Reinders: Intel Threading Building Blocks: Out¯tting C++ for Multi-Core Pro-
cessor Parallelism; O'Reilly, July 2007, ISBN 0596514808

84

APPENDIX B. FURTHER READING 85

² Gadi Taubenfeld: Synchronization Algorithms and Concurrent Programming; Prentice
Hall, July 2006, ISBN 0131972596

² Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug
Lea: Java Concurrency in Practice; Addison-Wesley Professional, May 2006, ISBN
0321349601

² Richard H. Carver and Kuo-Chung Tai: Modern Multithreading: Implementing, Test-
ing, and Debugging Multithreaded Java and C++/Pthreads/Wi n32 Programs; Wiley-
Interscience, October 2005, ISBN 0471725048

² Russ Miller and Laurence Boxer: Algorithms Sequential & Parallel: A Uni¯ed Ap-
proach; Charles River, August 2005, ISBN 1584504129

² Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill: Patterns for Parallel
Programming; Addison-Wesley Professional, September 2004, ISBN 0321228111

² Scott Oaks and Henry Wong: Java Threads; O'Reilly, September 2004

² Aart J.C. Bik: The Software Vectorization Handbook: Applyi ng Intel Multimedia Ex-
tensions for Maximum Performance; Intel Press, May 2004, ISBN 0974364924

² Richard Gerber and Andrew Binstock: Programming with Hyper-Threading Technol-
ogy: How to Write Multithreaded Software for Intel IA-32 Proc essors; Intel Press, May
2004, ISBN 0971786143

B.2 GPGPU Programming

Since this technology is still very young, only a handful of books on OpenCL and CUDA has
been published [143]:

² Jason Sanders and Edward Kandrot: CUDA by Example: An Introduction to General-
Purpose GPU Programming; Addison-Wesley Professional, July 2010, ISBN 0131387685

² Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihir o Asahara, Satoshi Miki:
The OpenCL Programming Book; Fixstars, March 2010
http://www.fixstars.com/en/company/books/opencl/

² David B. Kirk and Wen-mei W. Hwu: Programming Massively Paral lel Processors: A
Hands-on Approach; Morgan Kaufmann, February 2010, ISBN 0123814723

² Hubert Nguyen: GPU Gems 3; Addison-Wesley Professional, August 12, 2007, ISBN
0321515269
http://developer.nvidia.com/object/gpu-gems-3.html

² GPU Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation; Addison-Wesley Professional, March 13, 2005, ISBN 0321335597
http://developer.nvidia.com/object/gpu-gems-3.html

APPENDIX B. FURTHER READING 86

B.3 Cell Programming

² Sandeep Koranne: Practical Computing on the Cell BroadbandEngine; Springer, July
2009, ISBN 1441903070

² Matthew Scarpino: Programming the Cell Processor: For Games, Graphics, and Com-
putation; Prentice Hall, October 2008, ISBN 0136008860

² IBM Redbook: Programming the Cell Broadband Engine Architecture: Examples and
Best Practices; Vervante, August 2008, ISBN 0738485942
http://www.redbooks.ibm.com/redbooks/pdfs/sg247575. pdf

B.4 Functional Programming

² Dean Wampler and Alex Payne: Programming Scala; O'Reilly, September 2009, ISBN
0596155956

² Venkat Subramaniam: Scala: Tackle Multi-Core Complexity on the Java Virtual Ma-
chine; Pragmatic Bookshelf, July 2009, ISBN 193435631X

² Francesco Cesarini and Simon Thompson: Erlang Programming; O'Reilly, June 2009,
ISBN 0596518188

² David Pollak: Beginning Scala; Apress, May 2009, ISBN 1430219890

² Bryan O'Sullivan, John Goerzen, and Don Stewart: Real World Haskell; O'Reilly, De-
cember 2008, ISBN 0596514980

² Martin Odersky, Lex Spoon, and Bill Venners: Programming inScala: A Comprehensive
Step-by-step Guide; Artima, November 2008, ISBN 0981531601

² Joe Armstrong: Programming Erlang: Software for a Concurrent World; Pragmatic
Bookshelf, July 2007, ISBN 193435600X

² Graham Hutton: Programming in Haskell; Cambridge University Press, January 2007,
ISBN 0521692695

Glossary

3D stacking chip with two or more layers of active elec-
tronic components, integrated both vertically
and horizontally into a single circuit, 30

Accelerated Processing Unit see APU, 27, 68
accelerator dedicated hardware to perform some function

faster than is possible in software running on
the general-purpose CPU, 9, 26

ACM Association for Computing Machinery; scien-
ti¯c and educational computing society, 65

ACML AMD Core Math Library; software develop-
ment library providing useful mathematical
routines optimized for AMD processors, 45

ACML-GPU AMD Core Math Library for Graphic Pro-
cessors; an ATI Stream accelerated version of
ACML, 45

ADA object-oriented programming language based
on Pascal, 44

adder digital circuit that performs addition of num-
bers, 38, 43

Advanced Vector Extensions see AVE, 55
alpha stage ¯rst phase to begin software testing, 56
AMD semiconductor company manufacturing x86

processors, 9, 12, 45, 55, 68
Amdahl's Law stating that the speedup of an algorithm is

limited by the sequential parts that can not
be parallelized, 24

Analog Signal Processing see ASP, 58
Apache the most used web server software, 19
API Application Programming Interface; an inter-

face o®ered by a software program allowing it
to interact with other programs, 48, 55, 61

application gateway server providing client applications access to
server applications, managing security and
sessions, 18

Application Programming Interface see API, 48, 55, 61

87

Glossary 88

application server software framework dedicated to the e±cient
execution of programs, 19

Application Server Provider see ASP, 18
Application-Speci¯c Integrated Circuit see ASIC, 26, 34
APU Accelerated Processing Unit; the product of

the merger between AMD and ATI, combin-
ing general processor execution as well as 3D
geometry processing and other functions of
modern GPUs into a single package, 27, 68

architecture, of a processor the way a given Instruction Set Architecture
(ISA) is implemented on a processor, 9, 13,
44, 67

ASIC Application-Speci¯c Integrated Circuit; an
Integrated Circuit (IC) customized for a par-
ticular use, 26, 34

ASP Analog Signal Processing, signal processing
conducted on analog signals by analog means;
or Application Server Provider, a business
that provides applications to customers over
a network, 18

Association for Computing Machinery see ACM, 65
associative array an abstract data type composed of a collec-

tion of unique keys and a collection of values,
where each key is associated with one value,
54

ATI graphics processor and chipset manufacturer
acquired by AMD in 2006, 65

ATI 4870 video adapter graphics adapter based on the RV770 GPU,
using GDDR5 memory, 41

ATI 5970 video adapter graphics adapter based on two Cypress GPUs,
using GDDR5 memory, 41

ATLAS Automatically Tuned Linear Algebra Soft-
ware; open source software library for linear
algebra, 50

atomic operation an operation or set of operations appearing
to the rest of the system to occur instanta-
neously, 47

augmented reality view of a physical real-world environment
whose elements are augmented by virtual
computer-generated imagery, 59

Automatically Tuned Linear Algebra Software see ATLAS, 50
AVE Advanced Vector Extensions, AVX; future ex-

tension to the x86 Instruction Set Architec-
ture, 55

Glossary 89

back-end, of a compiler analysis, optimization, and machine-
dependent code generator, 13, 43, 45

back-o±ce processes dedicated to running the company
itself, 19

backpropagation common method of teaching arti¯cial neural
networks how to perform a given task, 59

barrel processor CPU that switches between threads of ex-
ecution on every cycle (interleaved multi-
threading), 28

beta stage software testing phase following alpha, when
the software is feature complete, 56

BI Business Intelligence; computer-based tech-
niques used in spotting, digging-out, and an-
alyzing business data, 19

blade PC a personal computer (PC) typically housed in
a datacenter, in conjunction with a thin client
on a user's desk, 15

blade system stripped down server computer with a mod-
ular design optimized to minimize the use of
physical space and energy, 15, 33, 41

Bloom¯eld processor code name for Intel high-end desktop proces-
sors sold as Core i7 9xx and single-processor
servers sold as Xeon 35xx, 25

Blue Gene system computer architecture project designed by
IBM to produce supercomputers, 41

Branded Zones a virtualization technology based on Solaris
Containers where individual zones can behave
in a manner other than the default brand of
the global zone, 23

BrandZ see Branded Zones, 23
bus subsystem that transfers data between com-

puter components inside a computer, 27
Business Intelligence see BI, 19
business logic functional algorithms that handle information

exchange between a database and a user in-
terface, 19

busy waiting threads actively waiting for resources to be-
come available, 48

byte code instruction set designed for e±cient execu-
tion by a software interpreter as well as being
suitable for further compilation into machine
code, 52

C++ object-oriented enhancement to the C pro-
gramming language, 44, 52, 60

Glossary 90

C++0x new standard for the C++ programming lan-
guage currently under development, 52

C/C++ C and C++ programming languages, 33
C/C++ for Throughput Computing see Ct, 53
C#/.NET object-oriented programming language devel-

oped by Microsoft within the .NET initiative,
59

cache computer component that improves perfor-
mance by transparently storing data such that
future requests for that data can be served
faster, 12, 37, 46

cache-coherence consistency of data stored in local caches of a
shared resource, 46

call stack stack data structure that stores information
about the active subroutines of a computer
program, 49

capitance, of a transistor unavoidable and usually unwanted internal
capacitance of a transistor, 14

CBE Cell Broadband Engine; see Cell processor, 37
Cell Broadband Engine see CBE, 37
Cell processor microprocessor architecture jointly developed

by Sony, Toshiba, and IBM (STI), 16, 32, 41,
68

Central Processing Unit see CPU, 67
Cg C for Graphics; high-level shading language

developed by Nvidia for programming vertex
and pixel shaders, 65

chip an Integrated Circuit (IC) consisting mainly
of semiconductor devices that has been man-
ufactured in the surface of a thin substrate of
semiconductor material, 12, 67

chip manufacturing manufacturing of Integrated Circuits (ICs), 9,
13

circular dependency relation between two or more modules which
either directly or indirectly depend on each
other to function properly, 47

CISC Complex Instruction Set Computing; CPU
design strategy based on complex, higher-
level instructions, 14, 67

clock speed frequency of the clock in any synchronous
circuit, such as a Central Processing Unit
(CPU), 9, 12, 42, 52, 67

Close to Metal see CTM, 33
closed source proprietary computer software licensed under

exclusive legal right of its owner, 50

Glossary 91

cloud internet-based computing, whereby shared re-
sources, software, and information are pro-
vided to computers and other devices on de-
mand, 18

cluster group of linked computers, working together
closely so that in many respects they form a
single computer, 19, 49, 58

Cluster Checker tool used to check a cluster's compliance to
the Intel Cluster Ready program (ICR), 50

Code Generator code generator of the Ct VIP JIT compiler
back-end, 55

coherent memory shared memory protected by cache-coherency
mechanisms, 26

collective communication operator see collective communication primitives, 54
collective communication primitives instructions for collecting and combining dis-

tributed data after processing, 26
Commodity, O®-The-Shelf see COTS, 19
compiler computer program that transforms source

code written in a programming language (the
source language) into another computer lan-
guage (often a binary form known as object
code), 13, 35, 45, 52, 61

compiler directive programming language construct specifying
how a ompiler or assembler should process its
input, 45

Complex Instruction Set Computer see CISC, 14, 67
Compute Uni¯ed Device Architecture see CUDA, 33
computing node component of a cluster that is performing the

actual computing, 23
condition variable variable used in thread synchronization, 48
conditional branch point in a computer program where the °ow

of control is altered, 34
connectionism model of mental or behavioral phenomena as

the emergent processes of interconnected net-
works of simple units, 58

consolidation many small physical servers are replaced by
one larger physical server, to increase the uti-
lization of costly hardware resources, 17

Container, in Sun Solaris operating system level virtualization technol-
ogy, 23

container, in virtualization operating system level virtualization technol-
ogy, 23

Glossary 92

context switch process of storing and restoring state (con-
text) of a CPU so that execution can be re-
sumed from the same point at a later time,
to enable multiple processes to share a single
CPU, 48

control °ow the order in which the individual instructions
of a program are executed, 33, 45, 67

CoolThreads Solaris multi-threading technology based on a
barrel processor, 28

cooperative scheduling running of multiple applications simultane-
ously where processes voluntarily cede time
to each other, 46

coprocessor processor used to supplement the functions of
the primary CPU, 70

copy-on-write COW; optimization strategy where a resource
available to multiple callers is only copied
when modi¯ed, 22

core part of the processor that actually performs
the reading and executing of instructions, 9,
13, 63, 67

Core Math Library see AMCL, 45
CoreFusion platform low-powered VIA x86 processors with inte-

grated graphics engine, 27
Core 2 Quad processor Intel quad-core processors based on the Core

architecture, 25
Core i3 processors low-end Intel processors based on the Ne-

halem architecture, 27
Core i5 processors mainstream Intel processors based on the Ne-

halem architecture, 27
Core i7 processors high-end Intel processors based on the Ne-

halem architecture, 25
COTS Commodity, O®-The-Shelf; technology which

is ready-made and available to the general
public, 19

CPU Central Processing Unit; general-purpose pro-
cessor; portion of a computer system that car-
ries out the instructions of a computer pro-
gram, 10, 32, 42, 67

Cray manufacturer of supercomputers, 69
critical section piece of code that accesses a shared resource

that must not be concurrently accessed by
more than one thread of execution, 47

CrossFire ATI technology allowing up to four graphics
cards to be used in a single computer to im-
prove graphics performance, 19

cryptanalysis study of methods for codebreaking, 59

Glossary 93

cryptographic accelerator device that performs processor-intensive de-
crypting/encrypting while freeing the host
CPU to perform other tasks, 28

cryptography practice and study of hiding information, 59
Ct C/C++ for Throughput Computing; pro-

gramming model developed by Intel to ease
the exploitation of its future multicore chips,
14, 53

CTM Close to Metal; low-level programming inter-
face developed by ATI (now part of AMD),
aimed at enabling GPGPU, 33

CUDA Compute Uni¯ed Device Architecture; par-
allel programming architecture for nVidia's
graphics adapters, 33, 61, 70

CVT16 future instruction set extension by AMD, 55

DARPA Defense Advanced Research Projects Agency;
agency of the US Department of Defense
(DoD) responsible for the development of new
technology for use by the military, 69

data dependency when an instruction refers to the data of a
preceding instruction, 16

data parallelism parallelization of computing across multiple
processors, focuses on distributing the data
across di®erent parallel computing nodes, 19,
54, 68

database organized collection of data, typically in digi-
tal form, 59

database server computer program that provides database
services to other computer systems, as de¯ned
by the client-server model, 19

datacenter facility used to house computer systems and
associated components, such as telecommuni-
cations and storage systems, 15

datamining process of extracting patterns from data, 28
deadlock situation where all threads are waiting for an-

other to reach a certain point, 47, 55
debugger computer program that is used to test and

debug other programs, 35
Defense Advanced Research Projects Agency see DARPA, 69
density, in chip manufacturing referring to the size of the features on the sur-

face of a silicon chip, 9, 10, 70
density, of computer systems referring to the compactness of resources in a

computer system or datacenter, 10, 15
desktop Personal Computer (PC) in a form intended

for regular use at a single location, 13

Glossary 94

die a thin substrate of semiconductor material
holding an Integrated Circuit (IC), 12, 68

die area the surface area of a chip, 12, 14
Digital Signal Processing see DSP, 58
Dining Philosophers Problem a classic multi-process synchronization prob-

lem in computer science, 47
Direct3D graphics API, part of Microsoft's DirectX

API, 33
DirectCompute GPGPU API, part of Microsoft's DirectX

API, 33
DirectX collection of multimedia APIs on Microsoft's

Windows platform, 33, 59
display output output connector for a display screen, 27
distributed array special array that stores segments of data on

Matlab workers, 62
distributed computing computing on multiple autonomous comput-

ers that communicate through a network, 18,
46, 62

distributed system see distributed computing, 58
double bu®ering the use two bu®ers to hold a block of data in

a pipelined calculation, 42
double-precision °oating-point IEEE 754 standard for encoding binary or

decimal °oating point numbers in eight bytes,
34, 61, 67

DRAM memory Dynamic Random Access Memory; type of
memory that stores each bit of data in a sep-
arate capacitor within an Integrated Circuit
(IC), requiring a periodical refresh, 38

driver software allowing higher-level computer pro-
grams to interact with a hardware device, 23,
42

DSP Digital Signal Processing; representation of
signals by a sequence of numbers and the pro-
cessing of these signals, 58

dual-core processor containing two cores, 9
dynamic dissipation consumation of energy of a processor while

switching, 14
Dynamic Engine the run-time environment of Ct, 55
Dynamic RAM see DRAM memory, 38

EM64T Intel's name for the 64 bit extension (x86-64)
to the x86 instruction set, 20

embarrassingly parallel workload for which little or no e®ort is re-
quired to separate the problem into a number
of parallel tasks, 25, 54

embedded hypervisor hypervisor preinstalled with a server, 22

Glossary 95

empty instruction slot a slot in an instruction pipeline that can not
be ¯lled due to data dependencies, 29

Enterprise Resource Planning see ERP, 19
EPIC Explicitly Parallel Instruction Computing;

design philosophy based on VLIW used in In-
tel's Itanium processors, 16

Erlang functional programming language, 44, 53
ERP Enterprise Resource Planning; system to

manage and coordinate all the resources, in-
formation, and functions of a business, 19

ESXi embedded version of VMware's hypervisor, 22
Ethernet family of frame-based computer networking

technologies for Local Area Networks (LANs),
35, 50

Explicitly Parallel Instruction Computing see EPIC, 16
expression instruction to execute something that will re-

turn a value, 48

FASN8 platform AMD Quad FX platform; allowing users to
plug two dual-core processors into a single
motherboard for a total of four physical cores,
25

Fast Fourier Transform see FFT, 58
FC++ functional programming for C++, 49
feed-forward arti¯cial neural network where connections

between the nodes do not form a directed cy-
cle, 63

Fermi successor to nVidia's current Tesla product
line, 37

FFT Fast Fourier Transform; e±cient algorithm
to compute the Discrete Fourier Transform
(DFT) and its inverse, 58

¯ber lightweight thread, cooperatively scheduled,
46, 54

¯le system method of storing and organizing computer
¯les and data, 50

°oating-point system for representing numbers that would
be too large or too small to be represented as
integers, 32, 67

Floating-Point Operations Per Second see FLOPS, 32
Floating-Point Unit see FPU, 28
FLOPS Floating-Point Operations Per Second; mea-

sure of a computer's performance, 32, 41, 63
FMA3/FMA4 future instruction set extension by AMD, 55
for-loop programming language statement which al-

lows code to be repeatedly executed, 62

Glossary 96

Fortran programming language especially suited to
numeric computation and scienti¯c comput-
ing, 35

Fortress new functional programming language devel-
oped by Sun, 53

forward scaling code automatically spreading over the avail-
able hardware resources, 56

Fourier transform operation that transforms one complex-
valued function of a real variable into another
in signal processing, 53

FPU Floating-Point Unit; part of a computer sys-
tem specially designed to carry out operations
on °oating-point numbers, 28

frame data structures containing subroutine state
information on the stack, 49

frame bu®er video output device that drives a video dis-
play from a memory bu®er containing a com-
plete frame of data, 34

frame rate frequency at which an imaging device
produces unique consecutive images called
frames, 18

front-end server servers taking care of presentation and inter-
action with the clients in a multi-tier infras-
tructure, 19

Front-Side Bus see FSB, 20
FSB Front-Side Bus; bus that carries data between

the CPU and the northbridge, 20
function portion of code within a larger program,

which performs a speci¯c task, 48, 61
function overloading allowing the creation of several methods with

the same name which di®er from each other
in the type of the input and the type of the
output, 54

function pointer type of pointer referring to a function, 49
functional programming programming paradigm that treats computa-

tion as the evaluation of mathematical func-
tions and avoids state and mutable data, 44

Fusion AMD's future processor generation, aiming to
integrate CPU and graphics engine into a sin-
gle architecture, 27, 68

future functions that do not change anything in the
outer scope while calculating their return val-
ues, 54

garbage collection detection and pruning of unused or inaccessi-
ble data structures, 56

Glossary 97

GDDR3 Graphics Double Data Rate 3; graphics card
speci¯c memory technology, designed by ATI
(now part of AMD), 37

GeForce brand of Graphics Processing Units (GPUs)
designed by Nvidia, 35

GeForce 8 processors eighth generation GeForce, featuring a fully
uni¯ed shader architecture, 33

General-Purpose Computing on GPU see GPGPU, 11, 16, 32, 41, 53, 58
general-purpose processor see CPU, 9
Go new functional programming language devel-

oped by Google, 53
GPGPU General-Purpose Computing on GPU; tech-

nique of using a GPU to perform computa-
tion in applications traditionally handled by
the CPU, 11, 16, 32, 41, 53, 58

GPU Graphics Processing Unit; specialized proces-
sor that o²oads and accelerates 3D or 2D
graphics rendering from the CPU, 10, 26, 32,
41, 58, 67

Graphics Double Data Rate 3 see GDDR3, 37
graphics pipeline graphics engine taking some representation of

a 3D scene as input and delivering a 2D raster
image as output, 26, 32

Graphics Processing Unit see GPU, 32, 67
graphics processor see GPU, 9, 32, 41
GUI builder software development tool that simpli¯es the

creation of GUIs by allowing the designer to
arrange widgets using a drag-and-drop WYSI-
WYG editor, 44

Gulftown processors six-core hyper-threaded Intel processor able
to run up to twelve threads in parallel, based
on the Westmere architecture, 25

Gustafson's Law stating that any problem can e®ectively be
parallelized as long as the workload is large
enough, 25

Harvard architecture computer architecture with physically sepa-
rate pathways for instructions and data, 49

hash code mathematical function converting a large
amount of data into a single integer that may
serve as an index to an array, 22

hash table data structure that uses a hash function to
map keys to their associated values, 54

Haskell functional programming language, 44

Glossary 98

header source code ¯les containing forward declara-
tions of classes, subroutines, variables, and
other identi¯ers, 48

heap specialized tree-based data structure, 56
heterogenous multi-core multi-core processors containing graphics and

other specialized engines, 27
High-Performance Computing see HPC, 9, 16, 32, 58
High-Performance Technical Computing see HPTC, 11, 20, 32, 50, 58
higher-order function function working on functions, 49
horizontally scalable applications tha can naturally be transformed

into multi-threaded or multi-process algo-
rithms, 17

HPC High-Performance Computing; use of super-
computers and computer clusters to solve ad-
vanced computation problems, 9, 16, 32, 58

HPTC High-Performance Technical Computing; ap-
plication of High-Performance Computing
(HPC) to technical and engineering problems,
11, 20, 32, 50, 58

HTT Hyper-Threading Technology; Intel's simulta-
neous multi-threading implementation, 25

hyper-threading see HTT, 9
Hyper-Threading Technology see HTT, 25
Hyper-V Microsoft's hypervisor, 22
Hyper-V Server 2008 OPK embedded version of Microsoft's hypervisor,

22
HyperTransport technology for interconnection of computer

processors, used by AMD, 26
hypervisor hardware virtualization, allowing multiple op-

erating systems to run concurrently on a host
computer, 22

I/O Input/Output, 17, 45
I/O controller hardware component connecting and control-

ling peripheral devices, 27
IBM manufacturing the Power and Cell processors,

15, 69
IBM Roadrunner supercomputer built by IBM at the Los

Alamos National Laboratory in New Mexico,
USA, currently the world's third fastest com-
puter, 39

ICR Intel Cluster Ready; cluster certi¯cation pro-
gram by Intel, providing a basic cluster plat-
form, 36, 49

Glossary 99

IDE Integrated Development Environment; soft-
ware application providing comprehensive fa-
cilities to computer programmers for software
development, 44

IDL Interactive Data Language; programming lan-
guage used for data analysis, 62

IEEE Institute of Electrical and Electronics Engi-
neers; international professional organization
for the advancement of technology related to
electricity, 65

IEEE 754 standard most used standard for °oating-point compu-
tation, 36

ILP Instruction-Level Parallelism; measure of how
many of the operations in a computer pro-
gram can be performed simultaneously, 12,
37, 67

imperative programming programming paradigm that describes com-
putation in terms of statements that change
a program state, 48

Independent Software Vendor see ISV, 18
In¯niBand switched fabric communications link used in

HPC, 35, 50
inherently serial algorithms that cannot be easily split up into

parallel portions, 25
Institute of Electrical and Electronics Engineers see IEEE, 65
instruction set see ISA, 14
Instruction Set Architecture see ISA, 56
instruction set extension extension to the general-purpose instruction

set of a CPU, 12
Instruction-Level Parallelism see ILP, 12, 37, 67
Integrated Development Environment see IDE, 44
Integrated Performance Primitives see IPP, 44
Intel the largest semiconductor company in the

world, manufacturing x86 and other proces-
sors, 9, 12, 44, 67

Intel Cluster Ready see ICR, 36, 49
Intel Cluster Toolkit toolkit for developing, analyzing, and opti-

mizing performance of parallel applications
for clusters, 30

Intel MPI Library Message Passing Interface; an API speci¯ca-
tion for communications in computer clusters
and supercomputers, 30

Intel Parallel Studio extension to Microsoft Visual Studio to help
programmers write multi-threaded applica-
tions, 30

Inter-Process Communication see IPC, 45

Glossary 100

Interactive Data Language see IDL, 62
interpreter program that directly executes instructions

written in a programming language, 52
IPC Inter-Process Communication; set of tech-

niques for the exchange of data among multi-
ple threads, 45

IPP Integrated Performance Primitives; threaded
software library of functions for multimedia
and data processing applications, 44

ISA Instruction Set Architecture; part of proces-
sor architecture related to programming, 13,
56

ISV Independent Software Vendor; company spe-
cializing in making or selling software, 18

Itanium processors Intel's high-end RISC processors, 16, 55, 68
iteration each repetition of a process, using the results

of one iteration as the starting point for the
next iteration, 49

Java object-oriented programming language devel-
oped by Sun, 13, 44, 52

JavaThreads Java's multi-threading implementation, 44
JIT Just-In-Time; processed when needed, 14, 55
JIT compiler dynamic translation; interpreted code is

translated from a high-level language to a ma-
chine code continuously during every execu-
tion, 55

Just-In-Time see JIT, 14, 55

K10 processors AMD's latest processor architecture, 25
Karp-Flatt metric measuring the e±ciency of a parallel compu-

tation, taking into account losses by load bal-
ancing issues and overhead, 25

kernel central component of most computer operat-
ing systems, 22

kernel, in GPGPU function executed in parallel on hundreds of
independent records, 34

Kernel-Based Virtual Machine see KVM, 18
KVM Kernel-Based Virtual Machine; kernel virtu-

alization structure for Linux, 18

lambda calculus formal system for function de¯nition, function
application, and recursion, 48

lambda function functions that are guaranteed to have no side-
e®ects, 48, 52

Glossary 101

Larrabee processor many-core processor from Intel, combining
relatively small and simple cores and graphics
pipeline functionality in a single architecture,
26, 68

Law of Diminishing Returns returns progressively decrease, 25
lead-free, in manufacturing and packaging the Restriction of Hazardous Substances Di-

rective (RoHS) of 2003 restricts the use of lead
and other hazardous substances in electrical
and electronic equipment, 15

LibM software library containing a collection of ba-
sic math functions optimized for x86-64 pro-
cessors, 45

library collection of subroutines or classes used to de-
velop software, 44, 53, 67

libsst standard GNU C library (glibc) string func-
tions optimized for AMD processors, 45

Linux family of Unix-like operating systems using
the Linux kernel, 23, 62

Linux distribution Unix-like software distribution built on top of
the Linux kernel, 50

Lisp functional programming language, 49
livelock when threads are still being executed but not

progressing, 47
lock convoy when the overhead of context switches by

threads waiting for a lock to become available
starts to impact the performance of a system,
48

logical memory page block of main memory in virtual memory
space, 22

loop sequence of commands that is executed re-
peatedly, 34

machine code instructions and data executed directly by a
computer's CPU, 55

MacOS X series of Unix-based operating systems and
GUIs developed by Apple, 62

mainboard see motherboard, 24
mainframe powerful computers used by large organiza-

tions for critical applications and bulk data
processing, 23, 33, 68

manufacturing process creating Integrated Circuits (ICs) in a
multiple-step sequence of photographic and
chemical processing, 13

many-core processors containing several cores, 13, 44, 52,
62, 67

Glossary 102

map applying a given function (given as a param-
eter) to each element of a collection, 54

Massively Multiplayer Online Role-Playing Games see MMORPG, 33
massively parallel computer system with hundreds if not thou-

sands of independent arithmetic units or en-
tire processors, 10, 67

Math Kernel Library see MKL, 44, 50
Matlab Matrix Laboratory; numerical computing en-

vironment, 61
Matlab Executable see MEX, 63
matrix addition operation of adding two matrices by adding

the corresponding entries together, 54
matrix multiplication operation of multiplying a matrix with either

a scalar or another matrix, 54
MCM Multi-Chip Module; electronic package where

multiple semiconductor dies are packaged
onto a unifying substrate, 25

memory holding the state information of a computing
system, 12, 69

Memory Ballooning technology allowing the hypervisor to reclaim
memory pages from virtual machines through
a special driver, forcing the operating system
to swap out pages, 22

memory controller digital circuit which manages the °ow of data
going to and from the main memory, 27

Memory Manager part of the run-time environment of Ct, 55
memory model how threads interact through memory, 53
Memory Overcommit keeping all processor cores of a virtualized

server system busy, enough virtual machines
should be loaded into memory, 23

memory page block of main memory in memory space, 22
memory space block of main memory in memory space, 46
memory wall the growing disparity of speed between CPU

and memory outside the CPU chip, 42
Message Checker new part of Intel's VTune Performance Anal-

yser, automatically detecting MPI errors such
as race conditions, deadlocks, and potential
deadlocks, 30

message passing a form of sending and receiving messages in
parallel computing, 30, 62

Message Passing Interface see MPI, 50
message queue queue for messaging in inter-process commu-

nication, or for inter-thread communication
within the same process, 45

messaging server application providing mail and calendaring
services, 19

Glossary 103

metaprogramming computer programs that write or manipulate
other programs (or themselves) as their data,
49, 52

MEX MATLAB Executable; integrating subrou-
tines written in C, C++, or Fortran into
MATLAB, 63

Microsoft Visual Studio IDE (Integrated Development Environment)
for the Microsoft Windows platform, 30

midplane, in blade enclosure PCB in a blade chassis, connecting servers at
the front and network and I/O components at
the back, 24

MKL Math Kernel Library; Intel's software library
of optimized, math routines for HPC, 44, 50

MMORPG Massively Multiplayer Online Role-Playing
Games; computer role-playing game in which
a very large number of players interact with
one another within a virtual game world, 33

Monte Carlo method method for modeling phenomena with signif-
icant uncertainty in inputs, 33, 58

Moore's Law stating that the number of transistors on a
silicon die doubles every two years, 12, 45, 64

motherboard central Printed Circuit Board (PCB) in many
computers, holding many of the crucial com-
ponents of the system, while providing con-
nectors for other peripherals, 9, 36

MPI Message Passing Interface; API speci¯cation
allowing computers to communicate with one
another in HPC, 50

Multi-Chip Module see MCM, 25
multi-core processors containing over ten cores, 9, 13, 32,

44, 52
multi-layer perceptron feedforward arti¯cial neural network using

three or more layers of nodes with nonlinear
activation functions, 61

multi-process applications running several processes at the
same time, 19

multi-tasking operating systems running several applica-
tions at the same time, 46

multi-threading running several threads at the same time, 44,
67

multi-tier architecture client-server architecture in which the presen-
tation, the application processing, and the
data management are logically separate pro-
cesses, 18

multiplier ratio of an internal CPU clock rate to the ex-
ternally supplied clock, 38, 43

Glossary 104

mutex algorithms used in concurrent programming
to avoid the simultaneous use of a shared re-
source, 47

mutual exclusion see mutex, 47

native code instructions and data executed directly by a
CPU, 14

Nehalem architecture Intel processor architecture, successor to the
Core architecture, 25

neural network arti¯cial neural network, composed of arti¯-
cial neurons or nodes, 59, 69

Nexus version 3 of the CUDA toolkit, 37
Niagara processor see UltraSPARC T1 processor, 20
NP-complete problem for which a solution can be veri¯ed

quickly, yet there is no known e±cient way to
locate a solution in the ¯rst plac, 45

numerical computing algorithms that use numerical approximation
for the problems of continuous mathematic,
61

nVidia manufacturer of graphics processors and
chipsets, 60, 67

o±ce productivity collection of programs used by knowledge
workers, 17

Open Virtualization Format see OVF, 22
OpenCL Open Computing Language; framework for

writing programs that execute across hetero-
geneous platforms consisting of CPUs, GPUs,
and other processors, 33, 70

OpenGL Open Graphics Library; cross-platform API
for writing applications that produce 2D and
3D computer graphics, 33, 65

OpenVZ operating system level virtualization technol-
ogy based on the Linux kernel, 23

operand part of a computer instruction that speci¯es
the data, 29

operating system set of system software programs in a computer
that regulate the ways application software
programs use the computer hardware and the
ways that users control the computer, 22, 46

Opteron Barcelona/Shanghai processors AMD's server processors based on the K10
architecture, 25

Opteron processors AMD's server processors, 20, 50

Glossary 105

OVF Open Virtualization Format; open standard
for packaging and distributing virtual appli-
ances or more generally software to be run in
virtual machines, 22

package, of a chip material added around the Integrated Circuit
(IC) to allow it to be handled without damage
and incorporated into a circuit, 30

parallel ¯le system ¯le system which is simultaneously mounted
on multiple servers, 50

PC-over-IP PCoIP; proprietary user interface protocol for
remote workstations and desktops, developed
by Teradici, 18

PCI Express Peripheral Component Interconnect Express;
PCIe; computer expansion card standard de-
signed to replace the older PCI, PCI-X, and
AGP standards, 35, 41

permutation rearrangement of values in an ordered fashion,
54

Phenom processors AMD's desktop processors based on the K10
architecture, 63

Phenom X4 processors AMD's desktop processors based on the K10
architecture, containing four cores, 25

photonics technical applications of light, 30
physical memory page block of main memory in physical memory

space, 22
physics complex physics interactions in modern

games, 27
physics engine computer software that provides an approx-

imate simulation of certain simple physical
systems in games, 58

pipe in a Unix-like operating system, a set of pro-
cesses chained by their standard streams, so
that the output of each process (stdout) feeds
directly as input (stdin) to the next one, 45

pipeline, of a processor data processing elements connected in series,
allowing overlapping execution of multiple in-
structions with the same circuitry, 16

pipelining see pipeline, 12
pizza box °at form factor computer systems, 36
PlayStation 3 PS3; home video game console produced by

Sony, 64, 68
Polaris research processor Tera°ops Research Chip; Intel research pro-

cessor containing eighty small cores and a
stacked memory, 29

Glossary 106

port, in memory technology bus interface that allows reading or writing
into a memory, 35

Portable Operating System Interface see POSIX, 48
POSIX Portable Operating System Interface; family

of related standards speci¯ed by the IEEE to
de¯ne the Application Programming Interface
(API), along with shell and utilities interfaces
for software compatible with variants of the
Unix operating system, 48

POSIX Threads see Pthreads, 45
power dissipation consumation of energy, 10, 13, 70
power envelope room for an electronic component to dissipate

power and heat in its environment, 13
Power processors IBM high-end RISC processors, 20, 38, 41
Power 6 processor IBM high-end RISC processors, introduced in

2007, 15
pragma see compiler directive, 45
preemptive scheduling running of multiple applications simultane-

ously where a process is interrupted for an-
other process to be executed, 46

pre¯x-sum operation on lists in which each element in
the result list is obtained from the sum of the
elements in the operand list up to its index,
54

priority inversion when higher-priority thread has to wait for a
lower-priority thread if the latter holds a lock
that the former needs, 48

process instance of a computer program that is being
executed, 17, 45, 53

programmability gap discrepancy between the parallelism available
in hardware and the ability for programmers
to map their algorithms onto this hardware,
67

proprietary under exclusive legal right of its owner, 24
protothread lightweight thread, cooperatively scheduled,

46
Pthreads POSIX Threads; POSIX standard for

threads, 45
PyCUDA Python bindings for CUDA, 64

QA Quality Assurance; process used to measure
and assure the quality of a product, 35

QPI bus QuickPath Interconnect; technology for inter-
connection of computer processors, used by
Intel, 20

Glossary 107

Quadro nVidia's graphics adapter product line for vi-
sualization, 35

Quadro FX video adapter nVidia's graphics adapter product line for vi-
sualization, for PCI Express slot, 35

Quality Assurance see QA, 35
QuickPath Interconnect see QPI bus, 20

RAC Real Application Clusters; software for clus-
tering and high availability in Oracle database
environments, 20

race condition when incrementing a variable, a thread has to
be sure that the variable was not changed by
another thread between reading the current
value and writing the new, incremented value,
47, 55

rack-mounted form factor for a standardized 19 inch frame
for mounting multiple equipment modules, 15

RAD Rapid Application Development; software de-
velopment methodology that uses minimal
planning in favor of rapid prototyping, 44

RAM Random Access Memory; computer data stor-
age, to be accessed in any order, 34

Random Access Memory see RAM, 34
Rapid Application Development see RAD, 44
raytracing generating an image by tracing the path of

light through pixels in an image plane and
simulating the e®ects of its encounters with
virtual objects, 58

Real Application Clusters see RAC, 20
record, in GPGPU a single matrix element to be worked on by a

kernel in a graphics processor, 34
recursion method of de¯ning functions in which the

function being de¯ned is applied within its
own de¯nition, 49

Red Hat Enterprise Linux see RHEL, 35
Reduced Instruction Set Computer see RISC, 14, 68
referential transparency function that will always return the same

value, each time it is evaluated using the same
parameters, 48

register small amount of storage available on the CPU,
29, 33

register ¯le array of processor registers in a processor, 45
remote desktop protocol user interface protocol for remote worksta-

tions and desktops, 18
Remote Graphics Software see RGS, 18

Glossary 108

rendering generating an image from a model describing
three-dimensional objects, 18

resource starvation when threads are still being executed but not
progressing due to deadlock or livelock, 47

RGS Remote Graphics Software; remote desktop
software developed by HP, 18

RHEL Red Hat Enterprise Linux; Linux distribution
produced by Red Hat, 35

RISC Reduced Instruction Set Computing; CPU
design strategy based on simple, faster in-
structions , 14, 68

Rock processor Sun's high-end RISC processors aimed at ver-
tically scalable workloads, 20

Rock's Law stating that the cost of a semiconductor chip
manufacturing plant doubles every four years,
16

run-time engine collection of software designed to support the
execution of computer programs written in
some computer language, 55

SaaS Software-as-a-Service; software that is de-
ployed over the internet, 15

Sandy Bridge architecture Intel processor architecture, successor to the
Nehalem architecture, 27

SBC Server-Based Computing; having applications
run on a central server, transmitting only the
user interface information to and from the
client, 18

scalability ability to either handle growing amounts of
work in a graceful manner or to be readily
enlarged, 56

Scalable Link Interface see SLI, 19
scalar atomic quantity that can hold only one value

at a time, 54
scale-out application capacity can easily be extended by adding ex-

tra server systems, 19
scale-up application capacity can only be extended by deploying a

heavier system, 19
scheduler software component of an operating system

assigning processes to run on the available
processors, 17, 46

Scheme functional programming language, based on
Lisp, 49

Glossary 109

scoreboarding centralized method for dynamically schedul-
ing a pipeline so that the instructions can ex-
ecute out of order when there are no con°icts
and the hardware is available, 12

SDK Software Development Kit; set of develop-
ment tools that allows for the creation of ap-
plications, 35

Server-Based Computing see SBC, 18
SGI Silicon Graphics; manufacturer of computer

systems for visualizations, 69
shader set of software instructions to calculate ren-

dering e®ects on graphics processors, 32
shared library software library that is shared among pro-

grams, 22
shared memory memory that may be simultaneously accessed

by multiple programs, 34, 45
shared resource resource that may be simultaneously accessed

by multiple programs, 47
SIMD Single Instruction, Multiple Data; computers

with multiple processing elements that per-
form the same operation on multiple data si-
multaneously, 34, 45, 67

Simultaneous Multi-Threading see SMT, 28
Single Instruction, Multiple Data see SIMD, 34, 45, 67
single-precision °oating-point IEEE 754 standard for encoding binary or

decimal °oating point numbers in four bytes,
36

Skulltrail platform dual-socket gaming platform manufactured
by Intel, allowing two processors to operate
on the same motherboard, 25

SLI Scalable Link Interface; nVidia's technology
allowing two or more graphics cards to be
used in a single computer to produce a sin-
gle output, 19

SMP Symmetric Multi-Processing; multi-processor
system containing two or more identical pro-
cessors connected to a single shared main
memory and controlled by a single operating
system instance, 13, 58

SMT Simultaneous Multi-Threading; , 28
socket connector on a motherboard for a processor,

45
Software Development Kit see SDK, 35
software pipeline chain of processing elements arranged so that

the output of each element is the input of the
next, 41

Glossary 110

Software-as-a-Service see SaaS, 15
Solaris Sun's Unix operating system, 23
SPARC processors Sun's high-end RISC processors, 20
sparse matrix most elements having the value zero, 54
SPE Synergistic Processing Element; RISC core of

the Cell processor, 16, 38
speculative execution the execution of code, the result of which may

not be needed, 12
speedup how much a parallel algorithm is faster than

a corresponding sequential algorithm, 14, 60,
69

Spice remote desktop software of KVM, 18
spinlock when a thread is trying to complete a task

involving reserved resources but is being hin-
dered by other threads actively waiting (busy
waiting) for the resources to become available,
48

SSE Streaming SIMD Extensions; SIMD instruc-
tion set extension to the x86 architecture, 12,
43, 53

SSE5 SIMD instruction set extension to the x86 ar-
chitecture, proposed by AMD, 55

SSEPlus open source project by AMD, to help devel-
opers write high performing SSE code, 45

stack data structure based on the principle of Last
In, First Out (LIFO), 45

stalling when a processor has to wait for data to be-
come available, 12

standard library collection of header ¯les and library routines
used to implement common operations in the
C programming language, 52

stateless programming language without program
state or data, 48

static dissipation consumation of energy of a processor while
not switching, 13

STI consortium cooperation of Sony, Toshiba, and IBM, cre-
ating the Cell processor, 37

STM Compiler prototype version of the Intel C++ compiler
that implements support for Software Trans-
actional Memory (STM), 56

storage device for recording information, 18
stream processing computer programming paradigm where a se-

ries of operations (kernel functions) are ap-
plied to each element (record) in the stream
(data), 32, 33, 67

Stream Technology AMD's GPGPU toolkit, 33

Glossary 111

Streaming SIMD Extensions see SSE, 12, 43, 53
strict programming language functional language that evaluates all param-

eters, 49
String Library see libsst, 45
Sun manufacturer of the SPARC processors, 20,

44
supercomputer extremely fast computer system containing

many vector processors, 33, 68
Superdome high-end server computer developed by HP,

20
superscalar processor executing more than one instruction

during a clock cycle by simultaneously dis-
patching multiple instructions to redundant
functional units, 12

SuSE Linux Linux distribution produced by Novell, 36
swapping when unused memory pages are temporarily

transfered to disk, 23
switching frequency, of a transistor frequency of a transistor in any synchronous

circuit, 14
Symmetric Multi-Processing see SMP, 13, 46, 58
Synergistic Processing Element see SPE, 16, 38
system integrator company that specializes in bringing together

component subsystems into a whole and en-
suring that those subsystems function to-
gether, 49

tail recursion recursion that can be executed in constant
memory space, 49

TBB Threading Building Blocks; C++ template li-
brary developed by Intel for writing software
that takes advantage of multi-core processors,
50

TDM Time-Division Multiplexing; multiplexing in
which two or more bit streams are transferred
apparently simultaneously but are physically
taking turns, 46

Tera-scale program Intel's program for research into computing
architectures for the decade to come, 29, 53

Tesla nVidia's graphics adapter product line for
GPGPU, 33, 60

Tesla C1060 video adapter nVidia computing adapter containing 240
cores, using GDDR3 memory, 35, 41

test-and-set instruction writing to a memory location and
returning its old value as a single atomic op-
eration, 47

Texture Mapping Unit see TMU, 34

Glossary 112

thick client client in client-server architecture which pro-
vides rich functionality independent of the
central server, 17

thin client client which depends heavily on its server, 15
thrashing situation where large amounts of computer re-

sources are used to do a minimal amount of
work, with the system in a continual state of
resource contention, 48

thread sequence of instructions that may execute in
parallel with other threads, 13, 32, 45, 52, 67

Thread Selection Unit see TSU, 28
thread synchronization mechanisms to ensure that two concurrently

running threads do not execute speci¯c por-
tions of their code at the same time, 46, 53

Thread-Level Parallelism see TLP, 13, 37
thread-safe when a function is e®ectively protecting all

possibly shared resources, 48
Threaded Run-Time see TRT, 55
Threading Building Blocks see TBB, 50
Throughput Vector see TVEC, 54
tick-tock model Intel's processor development model, to follow

every architectural change with shrinking of
the process technology, 15, 45

Time-Division Multiplexing see TDM, 46
TLP Thread-Level Parallelism; parallelization of

computer code across multiple cores or pro-
cessors, 13, 37

TMU Texture Mapping Unit; component in modern
graphics processors for arranging a bitmap
onto an arbitrary plane of a given 3D object
as a texture, 34

Top500 project ranking the 500 most powerful com-
puter systems in the world, 50

topology, of a processor dimensions of a processor, like number of
cores, vector capabilities, communication
busses, and other features, 24, 56, 70

TPS Transparent Page Sharing; mapping logical
pages having the same content from various
virtual machines onto a single physical page,
22

Trace Analyzer and Collector tool for analizing MPI application behavior
and ¯nding bottlenecks for parallel cluster ap-
plications, 30

transaction server software component used in implementing
transactions, 19

Glossary 113

transistor semiconductor device used to amplify and
switch electronic signals, 12, 67

Transparent Page Sharing see TPS, 22
TRT Threaded Run-Time; part of the run-time en-

vironment of Ct, 55
TSU Thread Selection Unit; selects which instruc-

tion stream to issue in Sun's multi-threading
design, 28

TVEC Throughput Vector; parallel datastructures in
Ct, 54

UltraSPARC processors Sun's high-end RISC processors, 20, 68
UltraSPARC T processors Sun's high-end RISC processors for horizon-

tally scalable workloads, 20, 68
unaligned memory access memory accesses not aligned to the memory

interface bus take longer, 29

vector instructions single instruction working on all elements in a
vector, typically for multimedia applications,
29, 33, 45

vertically scalable capacity can only be extended by deploying a
heavier system, 17, 50

Very Long Instruction Word see VLIW, 16
Victoria Falls processor Sun UltraSPARC T2 Plus processor, 28
video decoder device or software enabling video compres-

sion/decompression for digital video, 27
VIP Virtual Intel Platform; byte code based on

x86 and Itanium instruction sets, 55
virtualized desktop a virtualized personal computer (PC) typi-

cally housed in a datacenter, in conjunction
with a thin client on a user's desk, 15

Virtual Intel Platform see VIP, 55
virtual machine software implementation of a computer that

executes programs like a physical machine, 18,
56

virtual memory memory management technique multi-tasking
kernels, virtualizing a computer's memory de-
vices, 45

virtual reality computer-simulated environment, 59
virtualization execution of software in an environment sepa-

rated from the underlying hardware resources,
17, 56

virtualization stack software management stack to control virtual
machines, 22

Virtuozzo Containers operating system level virtualization technol-
ogy, 23

Glossary 114

visualization technique for creating images, diagrams, or
animations, 58, 69

VLIW Very Long Instruction Word; CPU architec-
ture executing operations in parallel based on
a ¯xed schedule determined when programs
are compiled, 16

VMotion tool by VMware, to move around virtual ma-
chines, 22

voltage electrical force that would drive an electric
current between two points, 14

Von Neumann architecture computer design model using a memory to
hold both instructions and data, 49

VTune Performance Analyser Intel tool for analyzing applications and im-
proving performance, 30

wafer thin slice of semiconductor material, used in
the fabrication of Integrated Circuits (ICs),
16

web server computer program that delivers content over
the web, 19

Westmere/Nehalem-C processors processors based on Intel's Nehalem architec-
ture manufactured in 32 nm, 25

Win Threads Microsoft's implementation of multi-
threading for the Windows platform,
45

Windows HPC Server 2008 Windows Server version for HPC applica-
tions, 35

Windows XP Windows version for personal computers
(PCs), 36

workload speci¯c task for a computer to be performed,
17

workstation high-end computer for technical or scienti¯c
applications, 17, 36

X10 new functional programming language devel-
oped by IBM, 53

x86 family of instruction set architectures starting
with the Intel 8086, continuing in current Intel
and AMD CPUs, 9, 13, 55, 67

x86 64 64 bit instruction set extension to the x86 ar-
chitecture, 20

XenServer VMware's virtualization technology, 22
Xeon processors Intel's server processors, 20, 35, 50
XOP future instruction set extension by AMD, 55

Glossary 115

yield proportion of devices produced which func-
tion correctly, 16

Where available, these descriptions are based on information from Wikipedia.

	Introduction
	Many-Core Processors
	General-Purpose Computing on Graphics Processing Units
	Heterogenous Multi-Core Processors
	Opportunities for Artificial Intelligence
	Research Questions
	Contents

	Multi-Core CPUs
	Introduction
	Moore's Law [sidebar]
	Multiple Cores

	Dead-End Street
	Performance per Watt [sidebar]
	Sustainability and Power Consumption
	System and Datacenter Design
	Chip Design and Manufacturing
	Rock's Law [sidebar]

	ILP Complexity
	Hardware Redundancy
	Workloads
	General-Purpose Desktops
	Workstations
	Developers
	Gaming
	I/O and Network Intensive Applications
	Vertically Scalable Applications
	High-Perfomance Computing (HPC)
	Consolidated Workloads
	Virtualization Issues

	Blades and Clusters [sidebar]
	COTS Clusters

	Amdahl's Law [sidebar]
	Gustafson's Law [sidebar]
	Karp-Flatt Metric [sidebar]
	x86 Multi-Core
	Heterogenous Multi-Cores
	AMD's Fusion strategy [sidebar]
	Sun SPARC Architecture [sidebar]
	Vertically Scalable Workloads

	Vector Instructions
	Intel's Tera-scale Computing Research Project
	Intel Polaris Research Processor [sidebar]
	Memory and I/O Interfaces
	Software Tools
	Intel Larrabee Processor [sidebar]

	GPGPU
	Introduction
	General-Purpose Computing on GPU
	GPGPU Programming Model [sidebar]
	GPGPU Programming
	nVidia's Tesla Portfolio
	GPGPU Systems
	Cray CX1
	HPC for the Workgroup [sidebar]
	Tesla Personal Supercomputer
	nVidia Tesla S1070
	nVidia Tesla C1060

	Future Direction in GPU Computing
	The STI Cell processor
	2000 PlayStations [sidebar]

	CPU/GPU Comparison
	The LOFAR Software Telescope [sidebar]
	GPGPU for LOFAR

	Programming Models
	Introduction
	Parallelizing Your Code
	Automatic Parallelization
	Forward Scalability

	Threads
	Software Parallelism [sidebar]
	Thread Synchronization
	Atomic Operations
	Deadlocks
	The Dining Philosophers Problem [sidebar]
	Other Synchronization Problems
	Pthreads

	Functional Programming
	Functional Programming Languages

	Clusters
	Intel Cluster Ready program

	Programming Languages
	Introduction
	C++0x
	Java
	Automatic Parallelization
	Intel Ct: C/C++ for Throughput Computing
	Throughput Vectors
	Futures
	JIT Compiler
	Forward Scaling
	Availability
	Performance Penalty

	AI-Related Projects
	Applications
	GNeuron
	GPU4Vision
	Performance

	AccelerEyes Jacket [sidebar]
	Matlab Parallel Computing Toolbox
	GPUmat and GPULib
	Evaluation

	Evolved Machines
	Comparing Biologically Inspired Visual Models
	OpenVidia
	MinGPU
	Other Research Projects
	Speedups
	CUDA Courses

	Conclusion
	Thread-Level Parallelism (TLP) vs. Data Parallelism
	Future Directions
	High-Performance Computing
	The New Normal in High-Performance Computing
	For Artificial Intelligence
	Maturity
	Jumping on the Bandwagon

	Publications
	Publications in Dutch ICT Media

	Further Reading
	Multi-Core Programming
	GPGPU Programming
	Cell Programming
	Functional Programming

